

Machine Learning

Tom M. Mitchell

Product Details
• Hardcover: 432 pages ; Dimensions (in inches): 0.75 x 10.00 x 6.50

• Publisher: McGraw-Hill Science/Engineering/Math; (March 1, 1997)

• ISBN: 0070428077

• Average Customer Review: Based on 16 reviews.

• Amazon.com Sales Rank: 42,816

• Popular in: Redmond, WA (#17) , Ithaca, NY (#9)

Editorial Reviews

From Book News, Inc. An introductory text on primary approaches to machine learning and
the study of computer algorithms that improve automatically through experience. Introduce
basics concepts from statistics, artificial intelligence, information theory, and other disciplines as
need arises, with balanced coverage of theory and practice, and presents major algorithms with
illustrations of their use. Includes chapter exercises. Online data sets and implementations of
several algorithms are available on a Web site. No prior background in artificial intelligence or
statistics is assumed. For advanced undergraduates and graduate students in computer science,
engineering, statistics, and social sciences, as well as software professionals. Book News, Inc.®,
Portland, OR

Book Info: Presents the key algorithms and theory that form the core of machine learning.
Discusses such theoretical issues as How does learning performance vary with the number of
training examples presented? and Which learning algorithms are most appropriate for various
types of learning tasks? DLC: Computer algorithms.
Book Description: This book covers the field of machine learning, which is the study of
algorithms that allow computer programs to automatically improve through experience. The
book is intended to support upper level undergraduate and introductory level graduate courses in
machine learning

PREFACE

The field of machine learning is concerned with the question of how to construct
computer programs that automatically improve with experience. In recent years
many successful machine learning applications have been developed, ranging from
data-mining programs that learn to detect fraudulent credit card transactions, to
information-filtering systems that learn users' reading preferences, to autonomous
vehicles that learn to drive on public highways. At the same time, there have been
important advances in the theory and algorithms that form the foundations of this
field.

The goal of this textbook is to present the key algorithms and theory that
form the core of machine learning. Machine learning draws on concepts and
results from many fields, including statistics, artificial intelligence, philosophy,
information theory, biology, cognitive science, computational complexity, and
control theory. My belief is that the best way to learn about machine learning is
to view it from all of these perspectives and to understand the problem settings,
algorithms, and assumptions that underlie each. In the past, this has been difficult
due to the absence of a broad-based single source introduction to the field. The
primary goal of this book is to provide such an introduction.

Because of the interdisciplinary nature of the material, this book makes
few assumptions about the background of the reader. Instead, it introduces basic
concepts from statistics, artificial intelligence, information theory, and other disci-
plines as the need arises, focusing on just those concepts most relevant to machine
learning. The book is intended for both undergraduate and graduate students in
fields such as computer science, engineering, statistics, and the social sciences,
and as a reference for software professionals and practitioners. Two principles
that guided the writing of the book were that it should be accessible to undergrad-
uate students and that it should contain the material I would want my own Ph.D.
students to learn before beginning their doctoral research in machine learning.

xvi PREFACE

A third principle that guided the writing of this book was that it should
present a balance of theory and practice. Machine learning theory attempts to an-
swer questions such as "How does learning performance vary with the number of
training examples presented?" and "Which learning algorithms are most appropri-
ate for various types of learning tasks?" This book includes discussions of these
and other theoretical issues, drawing on theoretical constructs from statistics, com-
putational complexity, and Bayesian analysis. The practice of machine learning
is covered by presenting the major algorithms in the field, along with illustrative
traces of their operation. Online data sets and implementations of several algo-
rithms are available via the World Wide Web at http://www.cs.cmu.edu/-tom1
mlbook.html. These include neural network code and data for face recognition,
decision tree learning, code and data for financial loan analysis, and Bayes clas-
sifier code and data for analyzing text documents. I am grateful to a number of
colleagues who have helped to create these online resources, including Jason Ren-
nie, Paul Hsiung, Jeff Shufelt, Matt Glickman, Scott Davies, Joseph O'Sullivan,
Ken Lang, Andrew McCallum, and Thorsten Joachims.

ACKNOWLEDGMENTS
In writing this book, I have been fortunate to be assisted by technical experts
in many of the subdisciplines that make up the field of machine learning. This
book could not have been written without their help. I am deeply indebted to
the following scientists who took the time to review chapter drafts and, in many
cases, to tutor me and help organize chapters in their individual areas of expertise.

Avrim Blum, Jaime Carbonell, William Cohen, Greg Cooper, Mark Craven,
Ken DeJong, Jerry DeJong, Tom Dietterich, Susan Epstein, Oren Etzioni,
Scott Fahlman, Stephanie Forrest, David Haussler, Haym Hirsh, Rob Holte,
Leslie Pack Kaelbling, Dennis Kibler, Moshe Koppel, John Koza, Miroslav
Kubat, John Lafferty, Ramon Lopez de Mantaras, Sridhar Mahadevan, Stan
Matwin, Andrew McCallum, Raymond Mooney, Andrew Moore, Katharina
Morik, Steve Muggleton, Michael Pazzani, David Poole, Armand Prieditis,
Jim Reggia, Stuart Russell, Lorenza Saitta, Claude Sammut, Jeff Schneider,
Jude Shavlik, Devika Subramanian, Michael Swain, Gheorgh Tecuci, Se-
bastian Thrun, Peter Turney, Paul Utgoff, Manuela Veloso, Alex Waibel,
Stefan Wrobel, and Yiming Yang.

I am also grateful to the many instructors and students at various universi-
ties who have field tested various drafts of this book and who have contributed
their suggestions. Although there is no space to thank the hundreds of students,
instructors, and others who tested earlier drafts of this book, I would like to thank
the following for particularly helpful comments and discussions:

Shumeet Baluja, Andrew Banas, Andy Barto, Jim Blackson, Justin Boyan,
Rich Caruana, Philip Chan, Jonathan Cheyer, Lonnie Chrisman, Dayne Frei-
tag, Geoff Gordon, Warren Greiff, Alexander Harm, Tom Ioerger, Thorsten

PREFACE xvii

Joachim, Atsushi Kawamura, Martina Klose, Sven Koenig, Jay Modi, An-
drew Ng, Joseph O'Sullivan, Patrawadee Prasangsit, Doina Precup, Bob
Price, Choon Quek, Sean Slattery, Belinda Thom, Astro Teller, Will Tracz

I would like to thank Joan Mitchell for creating the index for the book. I
also would like to thank Jean Harpley for help in editing many of the figures.
Jane Loftus from ETP Harrison improved the presentation significantly through
her copyediting of the manuscript and generally helped usher the manuscript
through the intricacies of final production. Eric Munson, my editor at McGraw
Hill, provided encouragement and expertise in all phases of this project.

As always, the greatest debt one owes is to one's colleagues, friends, and
family. In my case, this debt is especially large. I can hardly imagine a more
intellectually stimulating environment and supportive set of friends than those I
have at Carnegie Mellon. Among the many here who helped, I would especially
like to thank Sebastian Thrun, who throughout this project was a constant source
of encouragement, technical expertise, and support of all kinds. My parents, as
always, encouraged and asked "Is it done yet?" at just the right times. Finally, I
must thank my family: Meghan, Shannon, and Joan. They are responsible for this
book in more ways than even they know. This book is dedicated to them.

Tom M. Mitchell

CHAPTER

INTRODUCTION

Ever since computers were invented, we have wondered whether they might be
made to learn. If we could understand how to program them to learn-to improve
automatically with experience-the impact would be dramatic. Imagine comput-
ers learning from medical records which treatments are most effective for new
diseases, houses learning from experience to optimize energy costs based on the
particular usage patterns of their occupants, or personal software assistants learn-
ing the evolving interests of their users in order to highlight especially relevant
stories from the online morning newspaper. A successful understanding of how to
make computers learn would open up many new uses of computers and new levels
of competence and customization. And a detailed understanding of information-
processing algorithms for machine learning might lead to a better understanding
of human learning abilities (and disabilities) as well.

We do not yet know how to make computers learn nearly as well as people
learn. However, algorithms have been invented that are effective for certain types
of learning tasks, and a theoretical understanding of learning is beginning to
emerge. Many practical computer programs have been developed to exhibit use-
ful types of learning, and significant commercial applications have begun to ap-
pear. For problems such as speech recognition, algorithms based on machine
learning outperform all other approaches that have been attempted to date. In
the field known as data mining, machine learning algorithms are being used rou-
tinely to discover valuable knowledge from large commercial databases containing
equipment maintenance records, loan applications, financial transactions, medical
records, and the like. As our understanding of computers continues to mature, it

2 MACHINE LEARNING

seems inevitable that machine learning will play an increasingly central role in
computer science and computer technology.

A few specific achievements provide a glimpse of the state of the art: pro-
grams have been developed that successfully learn to recognize spoken words
(Waibel 1989; Lee 1989), predict recovery rates of pneumonia patients (Cooper
et al. 1997), detect fraudulent use of credit cards, drive autonomous vehicles
on public highways (Pomerleau 1989), and play games such as backgammon at
levels approaching the performance of human world champions (Tesauro 1992,
1995). Theoretical results have been developed that characterize the fundamental
relationship among the number of training examples observed, the number of hy-
potheses under consideration, and the expected error in learned hypotheses. We
are beginning to obtain initial models of human and animal learning and to un-
derstand their relationship to learning algorithms developed for computers (e.g.,
Laird et al. 1986; Anderson 1991; Qin et al. 1992; Chi and Bassock 1989; Ahn
and Brewer 1993). In applications, algorithms, theory, and studies of biological
systems, the rate of progress has increased significantly over the past decade. Sev-
eral recent applications of machine learning are summarized in Table 1.1. Langley
and Simon (1995) and Rumelhart et al. (1994) survey additional applications of
machine learning.

This book presents the field of machine learning, describing a variety of
learning paradigms, algorithms, theoretical results, and applications. Machine
learning is inherently a multidisciplinary field. It draws on results from artifi-
cial intelligence, probability and statistics, computational complexity theory, con-
trol theory, information theory, philosophy, psychology, neurobiology, and other
fields. Table 1.2 summarizes key ideas from each of these fields that impact the
field of machine learning. While the material in this book is based on results from
many diverse fields, the reader need not be an expert in any of them. Key ideas
are presented from these fields using a nonspecialist's vocabulary, with unfamiliar
terms and concepts introduced as the need arises.

1.1 WELL-POSED LEARNING PROBLEMS
Let us begin our study of machine learning by considering a few learning tasks. For
the purposes of this book we will define learning broadly, to include any .computer
program that improves its performance at some task through experience. Put more
precisely,

Definition: A computer program is said to learn from experience E with respect
to some class of tasks T and performance measure P, if its performance at tasks in
T, as measured by P, improves with experience E.

For example, a computer program that learns to play checkers might improve
its performance as measured by its abiliry to win at the class of tasks involving
playing checkers games, through experience obtained by playing games against
itself. In general, to have a well-defined learning problem, we must identity these

CHAPTER 1 INTRODUCITON 3

0 Learning to recognize spoken words.
All of the most successful speech recognition systems employ machine learning in some form.
For example, the SPHINX system (e.g., Lee 1989) learns speaker-specific strategies for recognizing
the primitive sounds (phonemes) and words from the observed speech signal. Neural network
learning methods (e.g., Waibel et al. 1989) and methods for learning hidden Markov models
(e.g., Lee 1989) are effective for automatically customizing to,individual speakers, vocabularies,
microphone characteristics, background noise, etc. Similar techniques have potential applications
in many signal-interpretation problems.

0 Learning to drive an autonomous vehicle.
Machine learning methods have been used to train computer-controlled vehicles to steer correctly
when driving on a variety of road types. For example, the ALVINN system (Pomerleau 1989)
has used its learned strategies to drive unassisted at 70 miles per hour for 90 miles on public
highways among other cars. Similar techniques have possible applications in many sensor-based
control problems.

0 Learning to classify new astronomical structures.
Machine learning methods have been applied to a variety of large databases to learn general
regularities implicit in the data. For example, decision tree learning algorithms have been used
by NASA to learn how to classify celestial objects from the second Palomar Observatory Sky
Survey (Fayyad et al. 1995). This system is now used to automatically classify all objects in the
Sky Survey, which consists of three terrabytes of image data.

0 Learning to play world-class backgammon.
The most successful computer programs for playing games such as backgammon are based on
machiie learning algorithms. For example, the world's top computer program for backgammon,
TD-GAMMON (Tesauro 1992, 1995). learned its strategy by playing over one million practice
games against itself. It now plays at a level competitive with the human world champion. Similar
techniques have applications in many practical problems where very large search spaces must be
examined efficiently.

TABLE 1.1
Some successful applications of machiie learning.

three features: the class of tasks, the measure of performance to be improved, and
the source of experience.

A checkers learning problem:
Task T: playing checkers

0 Performance measure P: percent of games won against opponents
Training experience E: playing practice games against itself

We can specify many learning problems in this fashion, such as learning
to recognize handwritten words, or learning to drive a robotic automobile au-
tonomously.

A handwriting recognition learning problem:
0 Task T: recognizing and classifying handwritten words within images
0 Performance measure P: percent of words correctly classified

4 MACHINE LEARNING

Artificial intelligence
Learning symbolic representations of concepts. Machine learning as a search problem. Learning
as an approach to improving problem solving. Using prior knowledge together with training data
to guide learning.

0 Bayesian methods
Bayes' theorem as the basis for calculating probabilities of hypotheses. The naive Bayes classifier.
Algorithms for estimating values of unobserved variables.

0 Computational complexity theory
Theoretical bounds on the inherent complexity of different learning tasks, measured in terms of
the computational effort, number of training examples, number of mistakes, etc. required in order
to learn.
Control theory
Procedures that learn to control processes in order to optimize predefined objectives and that learn
to predict the next state of the process they are controlling.

0 Information theory
Measures of entropy and information content. Minimum description length approaches to learning.
Optimal codes and their relationship to optimal training sequences for encoding a hypothesis.
Philosophy
Occam's razor, suggesting that the simplest hypothesis is the best. Analysis of the justification for
generalizing beyond observed data.

0 Psychology and neurobiology
The power law of practice, which states that over a very broad range of learning problems,
people's response time improves with practice according to a power law. Neurobiological studies
motivating artificial neural network models of learning.

0 Statistics
Characterization of errors (e.g., bias and variance) that occur when estimating the accuracy of a
hypothesis based on a limited sample of data. Confidence intervals, statistical tests.

TABLE 1.2
Some disciplines and examples of their influence on machine learning.

0 Training experience E: a database of handwritten words with given classi-
fications

A robot driving learning problem:
0 Task T: driving on public four-lane highways using vision sensors
0 Performance measure P: average distance traveled before an error (as judged

by human overseer)
0 Training experience E: a sequence of images and steering commands record-

ed while observing a human driver

Our definition of learning is broad enough to include most tasks that we
would conventionally call "learning" tasks, as we use the word in everyday lan-
guage. It is also broad enough to encompass computer programs that improve
from experience in quite straightforward ways. For example, a database system

CHAFTlB 1 INTRODUCTION 5

that allows users to update data entries would fit our definition of a learning
system: it improves its performance at answering database queries, based on the
experience gained from database updates. Rather than worry about whether this
type of activity falls under the usual informal conversational meaning of the word
"learning," we will simply adopt our technical definition of the class of programs
that improve through experience. Within this class we will find many types of
problems that require more or less sophisticated solutions. Our concern here is
not to analyze the meaning of the English word "learning" as it is used in ev-
eryday language. Instead, our goal is to define precisely a class of problems that
encompasses interesting forms of learning, to explore algorithms that solve such
problems, and to understand the fundamental structure of learning problems and
processes.

1.2 DESIGNING A LEARNING SYSTEM
In order to illustrate some of the basic design issues and approaches to machine
learning, let us consider designing a program to learn to play checkers, with
the goal of entering it in the world checkers tournament. We adopt the obvious
performance measure: the percent of games it wins in this world tournament.

1.2.1 Choosing the Training Experience
The first design choice we face is to choose the type of training experience from
which our system will learn. The type of training experience available can have a
significant impact on success or failure of the learner. One key attribute is whether
the training experience provides direct or indirect feedback regarding the choices
made by the performance system. For example, in learning to play checkers, the
system might learn from direct training examples consisting of individual checkers
board states and the correct move for each. Alternatively, it might have available
only indirect information consisting of the move sequences and final outcomes
of various games played. In this later case, information about the correctness
of specific moves early in the game must be inferred indirectly from the fact
that the game was eventually won or lost. Here the learner faces an additional
problem of credit assignment, or determining the degree to which each move in
the sequence deserves credit or blame for the final outcome. Credit assignment can
be a particularly difficult problem because the game can be lost even when early
moves are optimal, if these are followed later by poor moves. Hence, learning from
direct training feedback is typically easier than learning from indirect feedback.

A second important attribute of the training experience is the degree to which
the learner controls the sequence of training examples. For example, the learner
might rely on the teacher to select informative board states and to provide the
correct move for each. Alternatively, the learner might itself propose board states
that it finds particularly confusing and ask the teacher for the correct move. Or the
learner may have complete control over both the board states and (indirect) training
classifications, as it does when it learns by playing against itself with no teacher

present. Notice in this last case the learner may choose between experimenting
with novel board states that it has not yet considered, or honing its skill by playing
minor variations of lines of play it currently finds most promising. Subsequent
chapters consider a number of settings for learning, including settings in which
training experience is provided by a random process outside the learner's control,
settings in which the learner may pose various types of queries to an expert teacher,
and settings in which the learner collects training examples by autonomously
exploring its environment.

A third important attribute of the training experience is how well it repre-
sents the distribution of examples over which the final system performance P must
be measured. In general, learning is most reliable when the training examples fol-
low a distribution similar to that of future test examples. In our checkers learning
scenario, the performance metric P is the percent of games the system wins in
the world tournament. If its training experience E consists only of games played
against itself, there is an obvious danger that this training experience might not
be fully representative of the distribution of situations over which it will later be
tested. For example, the learner might never encounter certain crucial board states
that are very likely to be played by the human checkers champion. In practice,
it is often necessary to learn from a distribution of examples that is somewhat
different from those on which the final system will be evaluated (e.g., the world
checkers champion might not be interested in teaching the program!). Such situ-
ations are problematic because mastery of one distribution of examples will not
necessary lead to strong performance over some other distribution. We shall see
that most current theory of machine learning rests on the crucial assumption that
the distribution of training examples is identical to the distribution of test ex-
amples. Despite our need to make this assumption in order to obtain theoretical
results, it is important to keep in mind that this assumption must often be violated
in practice.

To proceed with our design, let us decide that our system will train by
playing games against itself. This has the advantage that no external trainer need
be present, and it therefore allows the system to generate as much training data
as time permits. We now have a fully specified learning task.

A checkers learning problem:

0 Task T: playing checkers
0 Performance measure P: percent of games won in the world tournament
0 Training experience E: games played against itself

In order to complete the design of the learning system, we must now choose

1. the exact type of knowledge to be,learned
2. a representation for this target knowledge
3. a learning mechanism

CHAFTER I INTRODUCTION 7

1.2.2 Choosing the Target Function
The next design choice is to determine exactly what type of knowledge will be
learned and how this will be used by the performance program. Let us begin with
a checkers-playing program that can generate the legal moves from any board
state. The program needs only to learn how to choose the best move from among
these legal moves. This learning task is representative of a large class of tasks for
which the legal moves that define some large search space are known a priori, but
for which the best search strategy is not known. Many optimization problems fall
into this class, such as the problems of scheduling and controlling manufacturing
processes where the available manufacturing steps are well understood, but the
best strategy for sequencing them is not.

Given this setting where we must learn to choose among the legal moves,
the most obvious choice for the type of information to be learned is a program,
or function, that chooses the best move for any given board state. Let us call this
function ChooseMove and use the notation ChooseMove : B -+ M to indicate
that this function accepts as input any board from the set of legal board states B
and produces as output some move from the set of legal moves M. Throughout
our discussion of machine learning we will find it useful to reduce the problem
of improving performance P at task T to the problem of learning some particu-
lar targetfunction such as ChooseMove. The choice of the target function will
therefore be a key design choice.

Although ChooseMove is an obvious choice for the target function in our
example, this function will turn out to be very difficult to learn given the kind of in-
direct training experience available to our system. An alternative target function-
and one that will turn out to be easier to learn in this setting-is an evaluation
function that assigns a numerical score to any given board state. Let us call this
target function V and again use the notation V : B + 8 to denote that V maps
any legal board state from the set B to some real value (we use 8 to denote the set
of real numbers). We intend for this target function V to assign higher scores to
better board states. If the system can successfully learn such a target function V ,
then it can easily use it to select the best move from any current board position.
This can be accomplished by generating the successor board state produced by
every legal move, then using V to choose the best successor state and therefore
the best legal move.

What exactly should be the value of the target function V for any given
board state? Of course any evaluation function that assigns higher scores to better
board states will do. Nevertheless, we will find it useful to define one particular
target function V among the many that produce optimal play. As we shall see,
this will make it easier to design a training algorithm. Let us therefore define the
target value V (b) for an arbitrary board state b in B , as follows:

1. if b is a final board state that is won, then V (b) = 100
2. if b is a final board state that is lost, then V (b) = -100
3. if b is a final board state that is drawn, then V (b) = 0

4. if b is a not a final state in the game, then V(b) = V(bl), where b' is the best
final board state that can be achieved starting from b and playing optimally
until the end of the game (assuming the opponent plays optimally, as well).

While this recursive definition specifies a value of V(b) for every board
state b, this definition is not usable by our checkers player because it is not
efficiently computable. Except for the trivial cases (cases 1-3) in which the game
has already ended, determining the value of V(b) for a particular board state
requires (case 4) searching ahead for the optimal line of play, all the way to
the end of the game! Because this definition is not efficiently computable by our
checkers playing program, we say that it is a nonoperational definition. The goal
of learning in this case is to discover an operational description of V ; that is, a
description that can be used by the checkers-playing program to evaluate states
and select moves within realistic time bounds.

Thus, we have reduced the learning task in this case to the problem of
discovering an operational description of the ideal targetfunction V. It may be
very difficult in general to learn such an operational form of V perfectly. In fact,
we often expect learning algorithms to acquire only some approximation to the
target function, and for this reason the process of learning the target function
is often called function approximation. In the current discussion we will use the
symbol ? to refer to the function that is actually learned by our program, to
distinguish it from the ideal target function V.

1.23 Choosing a Representation for the Target Function
Now that we have specified the ideal target function V, we must choose a repre-
sentation that the learning program will use to describe the function c that it will
learn. As with earlier design choices, we again have many options. We could,
for example, allow the program to represent using a large table with a distinct
entry specifying the value for each distinct board state. Or we could allow it to
represent using a collection of rules that match against features of the board
state, or a quadratic polynomial function of predefined board features, or an arti-
ficial neural network. In general, this choice of representation involves a crucial
tradeoff. On one hand, we wish to pick a very expressive representation to allow
representing as close an approximation as possible to the ideal target function V.
On the other hand, the more expressive the representation, the more training data
the program will require in order to choose among the alternative hypotheses it
can represent. To keep the discussion brief, let us choose a simple representation:
for any given board state, the function c will be calculated as a linear combination
of the following board features:

0 xl: the number of black pieces on the board
x2: the number of red pieces on the board

0 xs: the number of black kings on the board
0 x4: the number of red kings on the board

CHAPTER I INTRODUCTION 9

x5: the number of black pieces threatened by red (i.e., which can be captured
on red's next turn)
X6: the number of red pieces threatened by black

Thus, our learning program will represent c(b) as a linear function of the
form

where wo through W6 are numerical coefficients, or weights, to be chosen by the
learning algorithm. Learned values for the weights w l through W6 will determine
the relative importance of the various board features in determining the value of
the board, whereas the weight wo will provide an additive constant to the board
value.

To summarize our design choices thus far, we have elaborated the original
formulation of the learning problem by choosing a type of training experience,
a target function to be learned, and a representation for this target function. Our
elaborated learning task is now

Partial design of a checkers learning program:
Task T: playing checkers
Performance measure P: percent of games won in the world tournament
Training experience E: games played against itself
Targetfunction: V:Board + 8
Targetfunction representation

The first three items above correspond to the specification of the learning task,
whereas the final two items constitute design choices for the implementation of the
learning program. Notice the net effect of this set of design choices is to reduce
the problem of learning a checkers strategy to the problem of learning values for
the coefficients wo through w 6 in the target function representation.

1.2.4 Choosing a Function Approximation Algorithm
In order to learn the target function f we require a set of training examples, each
describing a specific board state b and the training value Vtrain(b) for b. In other
words, each training example is an ordered pair of the form (b, V',,,i,(b)). For
instance, the following training example describes a board state b in which black
has won the game (note x2 = 0 indicates that red has no remaining pieces) and
for which the target function value VZrain(b) is therefore +100.

10 MACHINE LEARNING

Below we describe a procedure that first derives such training examples from
the indirect training experience available to the learner, then adjusts the weights
wi to best fit these training examples.

1.2.4.1 ESTIMATING TRAINING VALUES

Recall that according to our formulation of the learning problem, the only training
information available to our learner is whether the game was eventually won or
lost. On the other hand, we require training examples that assign specific scores
to specific board states. While it is easy to assign a value to board states that
correspond to the end of the game, it is less obvious how to assign training values
to the more numerous intermediate board states that occur before the game's end.
Of course the fact that the game was eventually won or lost does not necessarily
indicate that every board state along the game path was necessarily good or bad.
For example, even if the program loses the game, it may still be the case that
board states occurring early in the game should be rated very highly and that the
cause of the loss was a subsequent poor move.

Despite the ambiguity inherent in estimating training values for intermediate
board states, one simple approach has been found to be surprisingly successful.
This approach is to assign the training value of Krain(b) for any intermediate board
state b to be ?(~uccessor(b)) , where ? is the learner's current approximation to
V and where Successor(b) denotes the next board state following b for which it
is again the program's turn to move (i.e., the board state following the program's
move and the opponent's response). This rule for estimating training values can
be summarized as

~ u l k for estimating training values.
V,,,i. (b) c c(~uccessor(b))

While it may seem strange to use the current version of f to estimate training
values that will be used to refine this very same function, notice that we are using
estimates of the value of the Successor(b) to estimate the value of board state b. In-
tuitively, we can see this will make sense if ? tends to be more accurate for board
states closer to game's end. In fact, under certain conditions (discussed in Chap-
ter 13) the approach of iteratively estimating training values based on estimates of
successor state values can be proven to converge toward perfect estimates of Vtrain.

1.2.4.2 ADJUSTING THE WEIGHTS

All that remains is to specify the learning algorithm for choosing the weights wi to^
best fit the set of training examples { (b , Vtrain(b))}. As a first step we must define
what we mean by the bestfit to the training data. One common approach is to
define the best hypothesis, or set of weights, as that which minimizes the squarg
error E between the training values and the values predicted by the hypothesis V .

Thus, we seek the weights, or equivalently the c , that minimize E for the observed
training examples. Chapter 6 discusses settings in which minimizing the sum of
squared errors is equivalent to finding the most probable hypothesis given the
observed training data.

Several algorithms are known for finding weights of a linear function that
minimize E defined in this way. In our case, we require an algorithm that will
incrementally refine the weights as new training examples become available and
that will be robust to errors in these estimated training values. One such algorithm
is called the least mean squares, or LMS training rule. For each observed training
example it adjusts the weights a small amount in the direction that reduces the
error on this training example. As discussed in Chapter 4, this algorithm can be
viewed as performing a stochastic gradient-descent search through the space of
possible hypotheses (weight values) to minimize the squared enor E. The LMS
algorithm is defined as follows:

LMS weight update rule.
For each training example (b, Kmin(b))

Use the current weights to calculate ?(b)
For each weight mi, update it as

Here q is a small constant (e.g., 0.1) that moderates the size of the weight update.
To get an intuitive understanding for why this weight update rule works, notice
that when the error (Vtrain(b) - c(b)) is zero, no weights are changed. When
(V,,ain(b) - e(b)) is positive (i.e., when f (b) is too low), then each weight is
increased in proportion to the value of its corresponding feature. This will raise
the value of ?(b), reducing the error. Notice that if the value of some feature
xi is zero, then its weight is not altered regardless of the error, so that the only
weights updated are those whose features actually occur on the training example
board. Surprisingly, in certain settings this simple weight-tuning method can be
proven to converge to the least squared error approximation to the &,in values
(as discussed in Chapter 4).

1.2.5 The Final Design
The final design of our checkers learning system can be naturally described by four
distinct program modules that represent the central components in many learning
systems. These four modules, summarized in Figure 1.1, are as follows:

0 The Performance System is the module that must solve the given per-
formance task, in this case playing checkers, by using the learned target
function(s). It takes an instance of a new problem (new game) as input and
produces a trace of its solution (game history) as output. In our case, the

12 MACHINE LEARNING

Experiment
Generator

New problem Hypothesis
(initial game board) f VJ

Performance Generalizer
System

Solution tract Training examples
(game history) /<bl .Ymtn (blJ >. <bZ. Em(b2) >. ... I

Critic

FIGURE 1.1
Final design of the checkers learning program.

strategy used by the Performance System to select its next move at each step
is determined by the learned p evaluation function. Therefore, we expect
its performance to improve as this evaluation function becomes increasingly
accurate.

e The Critic takes as input the history or trace of the game and produces as
output a set of training examples of the target function. As shown in the
diagram, each training example in this case corresponds to some game state
in the trace, along with an estimate Vtrai, of the target function value for this
example. In our example, the Critic corresponds to the training rule given
by Equation (1.1).
The Generalizer takes as input the training examples and produces an output
hypothesis that is its estimate of the target function. It generalizes from the
specific training examples, hypothesizing a general function that covers these
examples and other cases beyond the training examples. In our example, the
Generalizer corresponds to the LMS algorithm, and the output hypothesis is
the function f described by the learned weights wo, . . . , W6.
The Experiment Generator takes as input the current hypothesis (currently
learned function) and outputs a new problem (i.e., initial board state) for the
Performance System to explore. Its role is to pick new practice problems that
will maximize the learning rate of the overall system. In our example, the
Experiment Generator follows a very simple strategy: It always proposes the
same initial game board to begin a new game. More sophisticated strategies

could involve creating board positions designed to explore particular regions
of the state space.

Together, the design choices we made for our checkers program produce
specific instantiations for the performance system, critic; generalizer, and experi-
ment generator. Many machine learning systems can-be usefully characterized in
terms of these four generic modules.

The sequence of design choices made for the checkers program is summa-
rized in Figure 1.2. These design choices have constrained the learning task in a
number of ways. We have restricted the type of knowledge that can be acquired
to a single linear evaluation function. Furthermore, we have constrained this eval-
uation function to depend on only the six specific board features provided. If the
true target function V can indeed be represented by a linear combination of these

Determine Type
of Training Experience 1

Determine
Target Function I

I Determine Representation
of Learned Function

...
Linear function Artificial neural
of six features network

/ \ I Determine
Learning Algorithm I

FIGURE 1.2
Sununary of choices in designing the checkers learning program.

particular features, then our program has a good chance to learn it. If not, then the
best we can hope for is that it will learn a good approximation, since a program
can certainly never learn anything that it cannot at least represent.

Let us suppose that a good approximation to the true V function can, in fact,
be represented in this form. The question then arises as to whether this learning
technique is guaranteed to find one. Chapter 13 provides a theoretical analysis
showing that under rather restrictive assumptions, variations on this approach
do indeed converge to the desired evaluation function for certain types of search
problems. Fortunately, practical experience indicates that this approach to learning
evaluation functions is often successful, even outside the range of situations for
which such guarantees can be proven.

Would the program we have designed be able to learn well enough to beat
the human checkers world champion? Probably not. In part, this is because the
linear function representation for ? is too simple a representation to capture well
the nuances of the game. However, given a more sophisticated representation for
the target function, this general approach can, in fact, be quite successful. For
example, Tesauro (1992, 1995) reports a similar design for a program that learns
to play the game of backgammon, by learning a very similar evaluation function
over states of the game. His program represents the learned evaluation function
using an artificial neural network that considers the complete description of the
board state rather than a subset of board features. After training on over one million
self-generated training games, his program was able to play very competitively
with top-ranked human backgammon players.

Of course we could have designed many alternative algorithms for this
checkers learning task. One might, for example, simply store the given training
examples, then try to find the "closest" stored situation to match any new situation
(nearest neighbor algorithm, Chapter 8). Or we might generate a large number of
candidate checkers programs and allow them to play against each other, keep-
ing only the most successful programs and further elaborating or mutating these
in a kind of simulated evolution (genetic algorithms, Chapter 9). Humans seem
to follow yet a different approach to learning strategies, in which they analyze,
or explain to themselves, the reasons underlying specific successes and failures
encountered during play (explanation-based learning, Chapter 11). Our design is
simply one of many, presented here to ground our discussion of the decisions that
must go into designing a learning method for a specific class of tasks.

1.3 PERSPECTIVES AND ISSUES IN MACHINE LEARNING
One useful perspective on machine learning is that it involves searching a very
large space of possible hypotheses to determine one that best fits the observed data
and any prior knowledge held by the learner. For example, consider the space of
hypotheses that could in principle be output by the above checkers learner. This
hypothesis space consists of all evaluation functions that can be represented by
some choice of values for the weights wo through w6. The learner's task is thus to
search through this vast space to locate the hypothesis that is most consistent with

the available training examples. The LMS algorithm for fitting weights achieves
this goal by iteratively tuning the weights, adding a correction to each weight
each time the hypothesized evaluation function predicts a value that differs from
the training value. This algorithm works well when the hypothesis representation
considered by the learner defines a continuously parameterized space of potential
hypotheses.

Many of the chapters in this book present algorithms that search a hypothesis
space defined by some underlying representation (e.g., linear functions, logical
descriptions, decision trees, artificial neural networks). These different hypothesis
representations are appropriate for learning different kinds of target functions. For
each of these hypothesis representations, the corresponding learning algorithm
takes advantage of a different underlying structure to organize the search through
the hypothesis space.

Throughout this book we will return to this perspective of learning as a
search problem in order to characterize learning methods by their search strategies
and by the underlying structure of the search spaces they explore. We will also
find this viewpoint useful in formally analyzing the relationship between the size
of the hypothesis space to be searched, the number of training examples available,
and the confidence we can have that a hypothesis consistent with the training data
will correctly generalize to unseen examples.

1.3.1 Issues in Machine Learning
Our checkers example raises a number of generic questions about machine learn-
ing. The field of machine learning, and much of this book, is concerned with
answering questions such as the following:

What algorithms exist for learning general target functions from specific
training examples? In what settings will particular algorithms converge to the
desired function, given sufficient training data? Which algorithms perform
best for which types of problems and representations?
How much training data is sufficient? What general bounds can be found
to relate the confidence in learned hypotheses to the amount of training
experience and the character of the learner's hypothesis space?
When and how can prior knowledge held by the learner guide the process
of generalizing from examples? Can prior knowledge be helpful even when
it is only approximately correct?
What is the best strategy for choosing a useful next training experience, and
how does the choice of this strategy alter the complexity of the learning
problem?
What is the best way to reduce the learning task to one or more function
approximation problems? Put another way, what specific functions should
the system attempt to learn? Can this process itself be automated?
How can the learner automatically alter its representation to improve its
ability to represent and learn the target function?

16 MACHINE LEARNING

1.4 HOW TO READ THIS BOOK
This book contains an introduction to the primary algorithms and approaches to
machine learning, theoretical results on the feasibility of various learning tasks
and the capabilities of specific algorithms, and examples of practical applications
of machine learning to real-world problems. Where possible, the chapters have
been written to be readable in any sequence. However, some interdependence
is unavoidable. If this is being used as a class text, I recommend first covering
Chapter 1 and Chapter 2. Following these two chapters, the remaining chapters
can be read in nearly any sequence. A one-semester course in machine learning
might cover the first seven chapters, followed by whichever additional chapters
are of greatest interest to the class. Below is a brief survey of the chapters.

Chapter 2 covers concept learning based on symbolic or logical representa-
tions. It also discusses the general-to-specific ordering over hypotheses, and
the need for inductive bias in learning.

0 Chapter 3 covers decision tree learning and the problem of overfitting the
training data. It also examines Occam's razor-a principle recommending
the shortest hypothesis among those consistent with the data.

0 Chapter 4 covers learning of artificial neural networks, especially the well-
studied BACKPROPAGATION algorithm, and the general approach of gradient
descent. This includes a detailed example of neural network learning for
face recognition, including data and algorithms available over the World
Wide Web.

0 Chapter 5 presents basic concepts from statistics and estimation theory, fo-
cusing on evaluating the accuracy of hypotheses using limited samples of
data. This includes the calculation of confidence intervals for estimating
hypothesis accuracy and methods for comparing the accuracy of learning
methods.

0 Chapter 6 covers the Bayesian perspective on machine learning, including
both the use of Bayesian analysis to characterize non-Bayesian learning al-
gorithms and specific Bayesian algorithms that explicitly manipulate proba-
bilities. This includes a detailed example applying a naive Bayes classifier to
the task of classifying text documents, including data and software available
over the World Wide Web.

0 Chapter 7 covers computational learning theory, including the Probably Ap-
proximately Correct (PAC) learning model and the Mistake-Bound learning
model. This includes a discussion of the WEIGHTED MAJORITY algorithm for
combining multiple learning methods.

0 Chapter 8 describes instance-based learning methods, including nearest neigh-
bor learning, locally weighted regression, and case-based reasoning.

0 Chapter 9 discusses learning algorithms modeled after biological evolution,
including genetic algorithms and genetic programming.

0 Chapter 10 covers algorithms for learning sets of rules, including Inductive
Logic Programming approaches to learning first-order Horn clauses.

0 Chapter 11 covers explanation-based learning, a learning method that uses
prior knowledge to explain observed training examples, then generalizes
based on these explanations.

0 Chapter 12 discusses approaches to combining approximate prior knowledge
with available training data in order to improve the accuracy of learned
hypotheses. Both symbolic and neural network algorithms are considered.

0 Chapter 13 discusses reinforcement learning-an approach to control learn-
ing that accommodates indirect or delayed feedback as training information.
The checkers learning algorithm described earlier in Chapter 1 is a simple
example of reinforcement learning.

The end of each chapter contains a summary of the main concepts covered,
suggestions for further reading, and exercises. Additional updates to chapters, as
well as data sets and implementations of algorithms, are available on the World
Wide Web at http://www.cs.cmu.edu/-tom/mlbook.html.

1.5 SUMMARY AND FURTHER READING
Machine learning addresses the question of how to build computer programs that
improve their performance at some task through experience. Major points of this
chapter include:

Machine learning algorithms have proven to be of great practical value in a
variety of application domains. They are especially useful in (a) data mining
problems where large databases may contain valuable implicit regularities
that can be discovered automatically (e.g., to analyze outcomes of medical
treatments from patient databases or to learn general rules for credit worthi-
ness from financial databases); (b) poorly understood domains where humans
might not have the knowledge needed to develop effective algorithms (e.g.,
human face recognition from images); and (c) domains where the program
must dynamically adapt to changing conditions (e.g., controlling manufac-
turing processes under changing supply stocks or adapting to the changing
reading interests of individuals).
Machine learning draws on ideas from a diverse set of disciplines, including
artificial intelligence, probability and statistics, computational complexity,
information theory, psychology and neurobiology, control theory, and phi-
losophy.

0 A well-defined learning problem requires a well-specified task, performance
metric, and source of training experience.

0 Designing a machine learning approach involves a number of design choices,
including choosing the type of training experience, the target function to
be learned, a representation for this target function, and an algorithm for
learning the target function from training examples.

18 MACHINE LEARNING

0 Learning involves search: searching through a space of possible hypotheses
to find the hypothesis that best fits the available training examples and other
prior constraints or knowledge. Much of this book is organized around dif-
ferent learning methods that search different hypothesis spaces (e.g., spaces
containing numerical functions, neural networks, decision trees, symbolic
rules) and around theoretical results that characterize conditions under which
these search methods converge toward an optimal hypothesis.

There are a number of good sources for reading about the latest research
results in machine learning. Relevant journals include Machine Learning, Neural
Computation, Neural Networks, Journal of the American Statistical Association,
and the IEEE Transactions on Pattern Analysis and Machine Intelligence. There
are also numerous annual conferences that cover different aspects of machine
learning, including the International Conference on Machine Learning, Neural
Information Processing Systems, Conference on Computational Learning The-
ory, International Conference on Genetic Algorithms, International Conference
on Knowledge Discovery and Data Mining, European Conference on Machine
Learning, and others.

EXERCISES
1.1. Give three computer applications for which machine learning approaches seem ap-

propriate and three for which they seem inappropriate. Pick applications that are not
already mentioned in this chapter, and include a one-sentence justification for each.

1.2. Pick some learning task not mentioned in this chapter. Describe it informally in a
paragraph in English. Now describe it by stating as precisely as possible the task,
performance measure, and training experience. Finally, propose a target function to
be learned and a target representation. Discuss the main tradeoffs you considered in
formulating this learning task.

1.3. Prove that the LMS weight update rule described in this chapter performs a gradient
descent to minimize the squared error. In particular, define the squared error E as in
the text. Now calculate the derivative of E with respect to the weight wi, assuming
that ?(b) is a linear function as defined in the text. Gradient descent is achieved by
updating each weight in proportion to -e. Therefore, you must show that the LMS
training rule alters weights in this proportion for each training example it encounters.

1.4. Consider alternative strategies for the Experiment Generator module of Figure 1.2.
In particular, consider strategies in which the Experiment Generator suggests new
board positions by

Generating random legal board positions
0 Generating a position by picking a board state from the previous game, then

applying one of the moves that was not executed
A strategy of your own design

Discuss tradeoffs among these strategies. Which do you feel would work best if the
number of training examples was held constant, given the performance measure of
winning the most games at the world championships?

1.5. Implement an algorithm similar to that discussed for the checkers problem, but use
the simpler game of tic-tac-toe. Represent the learned function V as a linear com-

bination of board features of your choice. To train your program, play it repeatedly
against a second copy of the program that uses a fixed evaluation function you cre-
ate by hand. Plot the percent of games won by your system, versus the number of
training games played.

REFERENCES
Ahn, W., & Brewer, W. F. (1993). Psychological studies of explanation-based learning. In G. DeJong

(Ed.), Investigating explanation-based learning. Boston: Kluwer Academic Publishers.
Anderson, J. R. (1991). The place of cognitive architecture in rational analysis. In K. VanLehn (Ed.),

Architectures for intelligence @p. 1-24). Hillsdale, NJ: Erlbaum.
Chi, M. T. H., & Bassock, M. (1989). Learning from examples via self-explanations. In L. Resnick

(Ed.), Knowing, learning, and instruction: Essays in honor of Robert Glaser. Hillsdale, NJ:
L. Erlbaum Associates.

Cooper, G., et al. (1997). An evaluation of machine-learning methods for predicting pneumonia
mortality. Artificial Intelligence in Medicine, (to appear).

Fayyad, U. M., Uthurusamy, R. (Eds.) (1995). Proceedings of the First International Conference on
Knowledge Discovery and Data Mining. Menlo Park, CA: AAAI Press.

Fayyad, U. M., Smyth, P., Weir, N., Djorgovski, S. (1995). Automated analysis and exploration of
image databases: Results, progress, and challenges. Journal of Intelligent Information Systems,
4, 1-19.

Laird, J., Rosenbloom, P., & Newell, A. (1986). SOAR: The anatomy of a general learning mecha-
nism. Machine Learning, 1(1), 1146.

Langley, P., & Simon, H. (1995). Applications of machine learning and rule induction. Communica-
tions of the ACM, 38(1 I), 55-64.

Lee, K. (1989). Automatic speech recognition: The development of the Sphinx system. Boston: Kluwer
Academic Publishers.

Pomerleau, D. A. (1989). ALVINN: An autonomous land vehicle in a neural network. (Technical
Report CMU-CS-89-107). Pittsburgh, PA: Carnegie Mellon University.

Qin, Y., Mitchell, T., & Simon, H. (1992). Using EBG to simulate human learning from examples
and learning by doing. Proceedings of the Florida AI Research Symposium (pp. 235-239).

Rudnicky, A. I., Hauptmann, A. G., & Lee, K. -F. (1994). Survey of current speech technology in
artificial intelligence. Communications of the ACM, 37(3), 52-57.

Rumelhart, D., Widrow, B., & Lehr, M. (1994). The basic ideas in neural networks. Communications
of the ACM, 37(3), 87-92.

Tesauro, G. (1992). Practical issues in temporal difference learning. Machine Learning, 8, 257.
Tesauro, G. (1995). Temporal difference learning and TD-gammon. Communications of the ACM,

38(3), 5848.
Waibel, A,, Hanazawa, T., Hinton, G., Shikano, K., & Lang, K. (1989). Phoneme recognition using

time-delay neural networks. IEEE Transactions on Acoustics, Speech and Signal Processing,
37(3), 328-339.

CHAPTER

CONCEPT
LEARNING
AND THE
GENERAL-TO-SPECIFIC
0,RDERING

The problem of inducing general functions from specific training examples is central
to learning. This chapter considers concept learning: acquiring the definition of a
general category given a sample of positive and negative training examples of the
category. Concept learning can be formulated as a problem of searching through a
predefined space of potential hypotheses for the hypothesis that best fits the train-
ing examples. In many cases this search can be efficiently organized by taking
advantage of a naturally occurring structure over the hypothesis space-a general-
to-specific ordering of hypotheses. This chapter presents several learning algorithms
and considers situations under which they converge to the correct hypothesis. We
also examine the nature of inductive learning and the justification by which any
program may successfully generalize beyond the observed training data.

2.1 INTRODUCTION
Much of learning involves acquiring general concepts from specific training exam-
ples. People, for example, continually learn general concepts or categories such
as "bird," "car," "situations in which I should study more in order to pass the
exam," etc. Each such concept can be viewed as describing some subset of ob-
jects or events defined over a larger set (e.g., the subset of animals that constitute

CHAFER 2 CONCEm LEARNING AND THE GENERAL-TO-SPECIFIC ORDERWG 21

birds). Alternatively, each concept can be thought of as a boolean-valued function
defined over this larger set (e.g., a function defined over all animals, whose value
is true for birds and false for other animals).

In this chapter we consider the problem of automatically inferring the general
definition of some concept, given examples labeled as+.members or nonmembers
of the concept. This task is commonly referred to as concept learning, or approx-
imating a boolean-valued function from examples.

Concept learning. Inferring a boolean-valued function from training examples of
its input and output.

2.2 A CONCEPT LEARNING TASK
To ground our discussion of concept learning, consider the example task of learn-
ing the target concept "days on which my friend Aldo enjoys his favorite water
sport." Table 2.1 describes a set of example days, each represented by a set of
attributes. The attribute EnjoySport indicates whether or not Aldo enjoys his
favorite water sport on this day. The task is to learn to predict the value of
EnjoySport for an arbitrary day, based on the values of its other attributes.

What hypothesis representation shall we provide to the learner in this case?
Let us begin by considering a simple representation in which each hypothesis
consists of a conjunction of constraints on the instance attributes. In particular,
let each hypothesis be a vector of six constraints, specifying the values of the six
attributes Sky, AirTemp, Humidity, Wind, Water, and Forecast. For each attribute,
the hypothesis will either

0 indicate by a "?' that any value is acceptable for this attribute,
0 specify a single required value (e.g., Warm) for the attribute, or
0 indicate by a "0" that no value is acceptable.

If some instance x satisfies all the constraints of hypothesis h, then h clas-
sifies x as a positive example (h(x) = 1). To illustrate, the hypothesis that Aldo
enjoys his favorite sport only on cold days with high humidity (independent of
the values of the other attributes) is represented by the expression

(?, Cold, High, ?, ?, ?)

Example Sky AirTemp Humidity Wind Water Forecast EnjoySport

1 Sunny Warm Normal Strong Warm Same Yes
2 Sunny Warm High Strong Warm Same Yes
3 Rainy Cold High Strong Warm Change No
4 Sunny Warm High Strong Cool Change Yes

TABLE 2.1
Positive and negative training examples for the target concept EnjoySport.

22 MACHINE LEARNING

The most general hypothesis-that every day is a positive example-is repre-
sented by

(?, ?, ?, ?, ?, ?)

and the most specific possible hypothesis-that no day is a positive example-is
represented by

(0,0,0,0,0,0)

To summarize, the EnjoySport concept learning task requires learning the
set of days for which EnjoySport = yes, describing this set by a conjunction
of constraints over the instance attributes. In general, any concept learning task
can be described by the set of instances over which the target function is defined,
the target function, the set of candidate hypotheses considered by the learner, and
the set of available training examples. The definition of the EnjoySport concept
learning task in this general form is given in Table 2.2.

2.2.1 Notation
Throughout this book, we employ the following terminology when discussing
concept learning problems. The set of items over which the concept is defined
is called the set of instances, which we denote by X. In the current example, X
is the set of all possible days, each represented by the attributes Sky, AirTemp,
Humidity, Wind, Water, and Forecast. The concept or function to be learned is
called the target concept, which we denote by c. In general, c can be any boolean-
valued function defined over the instances X; that is, c : X + {O, 1). In the current
example, the target concept corresponds to the value of the attribute EnjoySport
(i.e., c(x) = 1 if EnjoySport = Yes, and c(x) = 0 if EnjoySport = No).

-

0 Given:
0 Instances X: Possible days, each described by the attributes

0 Sky (with possible values Sunny, Cloudy, and Rainy),
0 AirTemp (with values Warm and Cold),
0 Humidity (with values Normal and High),
0 Wind (with values Strong and Weak),
0 Water (with values Warm and Cool), and
0 Forecast (with values Same and Change).

0 Hypotheses H: Each hypothesis is described by a conjunction of constraints on the at-
tributes Sky, AirTemp, Humidity, Wind, Water, and Forecast. The constraints may be "?"
(any value is acceptable), " 0 (no value is acceptable), or a specific value.

0 Target concept c: EnjoySport : X + (0, l)
0 Training examples D: Positive and negative examples of the target function (see Table 2.1).

0 Determine:
0 A hypothesis h in H such that h(x) = c(x) for all x in X.

TABLE 2.2
The EnjoySport concept learning task.

When learning the target concept, the learner is presented a set of training
examples, each consisting of an instance x from X, along with its target concept
value c (x) (e.g., the training examples in Table 2.1). Instances for which c (x) = 1
are called positive examples, or members of the target concept. Instances for which
C (X) = 0 are called negative examples, or nonmembers of the target concept.
We will often write the ordered pair (x , c (x)) to describe the training example
consisting of the instance x and its target concept value c (x) . We use the symbol
D to denote the set of available training examples.

Given a set of training examples of the target concept c , the problem faced
by the learner is to hypothesize, or estimate, c . We use the symbol H to denote
the set of all possible hypotheses that the learner may consider regarding the
identity of the target concept. Usually H is determined by the human designer's
choice of hypothesis representation. In general, each hypothesis h in H represents
a boolean-valued function defined over X; that is, h : X --+ {O, 1). The goal of the
learner is to find a hypothesis h such that h (x) = c (x) for a" x in X.

2.2.2 The Inductive Learning Hypothesis
Notice that although the learning task is to determine a hypothesis h identical
to the target concept c over the entire set of instances X, the only information
available about c is its value over the training examples. Therefore, inductive
learning algorithms can at best guarantee that the output hypothesis fits the target
concept over the training data. Lacking any further information, our assumption
is that the best hypothesis regarding unseen instances is the hypothesis that best
fits the observed training data. This is the fundamental assumption of inductive
learning, and we will have much more to say about it throughout this book. We
state it here informally and will revisit and analyze this assumption more formally
and more quantitatively in Chapters 5, 6, and 7.

The inductive learning hypothesis. Any hypothesis found to approximate the target
function well over a sufficiently large set of training examples will also approximate
the target function well over other unobserved examples.

2.3 CONCEPT LEARNING AS SEARCH
Concept learning can be viewed as the task of searching through a large space of
hypotheses implicitly defined by the hypothesis representation. The goal of this
search is to find the hypothesis that best fits the training examples. It is important
to note that by selecting a hypothesis representation, the designer of the learning
algorithm implicitly defines the space of all hypotheses that the program can
ever represent and therefore can ever learn. Consider, for example, the instances
X and hypotheses H in the EnjoySport learning task. Given that the attribute
Sky has three possible values, and that AirTemp, Humidity, Wind, Water, and
Forecast each have two possible values, the instance space X contains exactly

3 . 2 2 . 2 2 . 2 = 96 distinct instances. A similar calculation shows that there are
5 .4 -4 - 4 - 4 . 4 = 5 120 syntactically distinct hypotheses within H. Notice, however,
that every hypothesis containing one or more "IZI" symbols represents the empty
set of instances; that is, it classifies every instance as negative. Therefore, the
number of semantically distinct hypotheses is only 1 + (4 .3 .3 .3 .3 .3) = 973. Our
EnjoySport example is a very simple learning task, with a relatively small, finite
hypothesis space. Most practical learning tasks involve much larger, sometimes
infinite, hypothesis spaces.

If we view learning as a search problem, then it is natural that our study
of learning algorithms will e x a ~ t h e different strategies for searching the hypoth-
esis space. We will be particula ly interested in algorithms capable of efficiently
searching very large or infinite hypothesis spaces, to find the hypotheses that best
fit the training data.

2.3.1 General-to-Specific Ordering of Hypotheses
Many algorithms for concept learning organize the search through the hypothesis
space by relying on a very useful structure that exists for any concept learning
problem: a general-to-specific ordering of hypotheses. By taking advantage of this
naturally occurring structure over the hypothesis space, we can design learning
algorithms that exhaustively search even infinite hypothesis spaces without explic-
itly enumerating every hypothesis. To illustrate the general-to-specific ordering,
consider the two hypotheses

hi = (Sunny, ?, ?, Strong, ?, ?)

h2 = (Sunny, ?, ?, ?, ?, ?)

Now consider the sets of instances that are classified positive by hl and by h2.
Because h2 imposes fewer constraints on the instance, it classifies more instances
as positive. In fact, any instance classified positive by hl will also be classified
positive by h2. Therefore, we say that h2 is more general than hl.

This intuitive "more general than" relationship between hypotheses can be
defined more precisely as follows. First, for any instance x in X and hypothesis
h in H, we say that x satisjies h if and only if h(x) = 1. We now define the
more-general~han_or.-equal~o relation in terms of the sets of instances that sat-
isfy the two hypotheses: Given hypotheses hj and hk, hj is more-general-thanm--
equaldo hk if and only if any instance that satisfies hk also satisfies hi.

Definition: Let hj and hk be boolean-valued functions defined over X. Then hj is
moregeneral-than-or-equal-to hk (written hj 2, h k) if and only if

We will also find it useful to consider cases where one hypothesis is strictly more
general than the other. Therefore, we will say that hj is (strictly) more-generaldhan

CHAPTER 2 CONCEPT LEARNING AND THE GENERAL-TO-SPECIFIC ORDERING 25

I m t a n c e s X H y p o t h e s e s H

I I

A
Specific

General
t

i

XI= <Sunny, W a n , High, Strong, Cool, Same> h l = <Sunny, ?, ?, Strong, ?, ?>
x = <Sunny, Warm, High, Light, Warm, Same> 2 h = <Sunny, ?, ?, ?, ?, ?> 2

h 3 = <Sunny, ?, ?, 7, Cool, ?>

FIGURE 2.1
Instances, hypotheses, and the m o r e - g e n e r a l - t h a n relation. The box on the left represents the set X
of all instances, the box on the right the set H of all hypotheses. Each hypothesis corresponds to
some subset of X-the subset of instances that it classifies positive. The arrows connecting hypotheses
represent the m o r e - g e n e r a l - t h a n relation, with the arrow pointing toward the less general hypothesis.
Note the subset of instances characterized by h2 subsumes the subset characterized by h l , hence h2
is m o r e - g e n e r a l - t h a n h l .

hk (written hj >, hk) if and only if (hj p, hk) A (hk 2 , hi) . Finally, we will
sometimes find the inverse useful and will say that hj is morespecijkthan hk
when hk is more_general-than h j .

To illustrate these definitions, consider the three hypotheses h l , h2, and
h3 from our Enjoysport example, shown in Figure 2.1. How are these three
hypotheses related by the p, relation? As noted earlier, hypothesis h2 is more
general than hl because every instance that satisfies hl also satisfies h2. Simi-
larly, h2 is more general than h3. Note that neither hl nor h3 is more general
than the other; although the instances satisfied by these two hypotheses intersect,
neither set subsumes the other. Notice also that the p, and >, relations are de-
fined independent of the target concept. They depend only on which instances
satisfy the two hypotheses and not on the classification of those instances accord-
ing to the target concept. Formally, the p, relation defines a partial order over
the hypothesis space H (the relation is reflexive, antisymmetric, and transitive).
Informally, when we say the structure is a partial (as opposed to total) order, we
mean there may be pairs of hypotheses such as hl and h3, such that hl 2 , h3 and
h3 2, h l .

The pg relation is important because it provides a useful structure over the
hypothesis space H for any concept learning problem. The following sections
present concept learning algorithms that take advantage of this partial order to
efficiently organize the search for hypotheses that fit the training data.

1. Initialize h to the most specific hypothesis in H
2. For each positive training instance x

0 For each attribute constraint a, in h
If the constraint a, is satisfied by x
Then do nothing
Else replace a, in h by the next more general constraint that is satisfied by x

3. Output hypothesis h

TABLE 2.3
FIND-S Algorithm.

2.4 FIND-S: FINDING A MAXIMALLY SPECIFIC HYPOTHESIS
How can we use the more-general-than partial ordering to organize the search for
a hypothesis consistent with the observed training examples? One way is to begin
with the most specific possible hypothesis in H, then generalize this hypothesis
each time it fails to cover an observed positive training example. (We say that
a hypothesis "covers" a positive example if it correctly classifies the example as
positive.) To be more precise about how the partial ordering is used, consider the
FIND-S algorithm defined in Table 2.3.

To illustrate this algorithm, assume the learner is given the sequence of
training examples from Table 2.1 for the EnjoySport task. The first step of FIND-
S is to initialize h to the most specific hypothesis in H

Upon observing the first training example from Table 2.1, which happens to be a
positive example, it becomes clear that our hypothesis is too specific. In particular,
none of the "0" constraints in h are satisfied by this example, so each is replaced
by the next more general constraint {hat fits the example; namely, the attribute
values for this training example.

h -+ (Sunny, Warm, Normal, Strong, Warm, Same)

This h is still very specific; it asserts that all instances are negative except for
the single positive training example we have observed. Next, the second training
example (also positive in this case) forces the algorithm to further generalize h,
this time substituting a "?' in place of any attribute value in h that is not satisfied
by the new example. The refined hypothesis in this case is

h -+ (Sunny, Warm, ?, Strong, Warm, Same)

Upon encountering the third training example-in this case a negative exam-
ple-the algorithm makes no change to h. In fact, the FIND-S algorithm simply
ignores every negative example! While this may at first seem strange, notice that
in the current case our hypothesis h is already consistent with the new negative ex-
ample (i-e., h correctly classifies this example as negative), and hence no revision

is needed. In the general case, as long as we assume that the hypothesis space H
contains a hypothesis that describes the true target concept c and that the training
data contains no errors, then the current hypothesis h can never require a revision
in response to a negative example. To see why, recall that the current hypothesis
h is the most specific hypothesis in H consistent with the observed positive exam-
ples. Because the target concept c is also assumed to be in H and to be consistent
with the positive training examples, c must be more.general_than-or-equaldo h.
But the target concept c will never cover a negative example, thus neither will
h (by the definition of more-general~han). Therefore, no revision to h will be
required in response to any negative example.

To complete our trace of FIND-S, the fourth (positive) example leads to a
further generalization of h

h t (Sunny, Warm, ?, Strong, ?, ?)

The FIND-S algorithm illustrates one way in which the more-generaldhan
partial ordering can be used to organize the search for an acceptable hypothe-
sis. The search moves from hypothesis to hypothesis, searching from the most
specific to progressively more general hypotheses along one chain of the partial
ordering. Figure 2.2 illustrates this search in terms of the instance and hypoth-
esis spaces. At each step, the hypothesis is generalized only as far as neces-
sary to cover the new positive example. Therefore, at each stage the hypothesis
is the most specific hypothesis consistent with the training examples observed
up to this point (hence the name FIND-S). The literature on concept learning is

Instances X Hypotheses H

specific

General

* 1 = <Sunny Warm Normal Strong Warm Same>, + h , = <Sunny Warm Normal Strong Warm Same>
x2 = <Sunny Warm High Strong Warm Same>, + h2 = <Sunny Warm ? Strong Warm Same>

X3 = <Rainy Cold High Strong Warm Change>, - h = <Sunny Warm ? Strong Warm Same> 3
x - <Sunny Warm High Strong Cool Change>, + h - <Sunny Warm ? Strong ? ? > 4- 4 -

FIGURE 2.2
'The hypothesis space search performed by FINDS. The search begins (ho) with the most specific
hypothesis in H, then considers increasingly general hypotheses (hl through h4) as mandated by the
training examples. In the instance space diagram, positive training examples are denoted by "+,"
negative by "-," and instances that have not been presented as training examples are denoted by a
solid circle.

populated by many different algorithms that utilize this same more-general-than
partial ordering to organize the search in one fashion or another. A number of
such algorithms are discussed in this chapter, and several others are presented in
Chapter 10.

The key property of the FIND-S algorithm is that for hypothesis spaces de-
scribed by conjunctions of attribute constraints (such as H for the EnjoySport
task), FIND-S is guaranteed to output the most specific hypothesis within H
that is consistent with the positive training examples. Its final hypothesis will
also be consistent with the negative examples provided the correct target con-
cept is contained in H, and provided the training examples are correct. How-
ever, there are several questions still left unanswered by this learning algorithm,
such as:

Has the learner converged to the correct target concept? Although FIND-S
will find a hypothesis consistent with the training data, it has no way to
determine whether it has found the only hypothesis in H consistent with
the data (i.e., the correct target concept), or whether there are many other
consistent hypotheses as well. We would prefer a learning algorithm that
could determine whether it had converged and, if not, at least characterize
its uncertainty regarding the true identity of the target concept.

0 Why prefer the most specific hypothesis? In case there are multiple hypothe-
ses consistent with the training examples, FIND-S will find the most specific.
It is unclear whether we should prefer this hypothesis over, say, the most
general, or some other hypothesis of intermediate generality.

0 Are the training examples consistent? In most practical learning problems
there is some chance that the training examples will contain at least some
errors or noise. Such inconsistent sets of training examples can severely
mislead FIND-S, given the fact that it ignores negative examples. We would
prefer an algorithm that could at least detect when the training data is in-
consistent and, preferably, accommodate such errors.

0 What if there are several maximally specific consistent hypotheses? In the
hypothesis language H for the EnjoySport task, there is always a unique,
most specific hypothesis consistent with any set of positive examples. How-
ever, for other hypothesis spaces (discussed later) there can be several maxi-
mally specific hypotheses consistent with the data. In this case, FIND-S must
be extended to allow it to backtrack on its choices of how to generalize the
hypothesis, to accommodate the possibility that the target concept lies along
a different branch of the partial ordering than the branch it has selected. Fur-
thermore, we can define hypothesis spaces for which there is no maximally
specific consistent hypothesis, although this is more of a theoretical issue
than a practical one (see Exercise 2.7).

2.5 VERSION SPACES AND THE CANDIDATE-ELIMINATION
ALGORITHM
This section describes a second approach to concept learning, the CANDIDATE-
ELIMINATION algorithm, that addresses several of the limitations of FIND-S. Notice
that although FIND-S outputs a hypothesis from H,that is consistent with the
training examples, this is just one of many hypotheses from H that might fit the
training data equally well. The key idea in the CANDIDATE-ELIMINATION algorithm
is to output a description of the set of all hypotheses consistent with the train-
ing examples. Surprisingly, the CANDIDATE-ELIMINATION algorithm computes the
description of this set without explicitly enumerating all of its members. This is
accomplished by again using the more-general-than partial ordering, this time
to maintain a compact representation of the set of consistent hypotheses and to
incrementally refine this representation as each new training example is encoun-
tered.

The CANDIDATE-ELIMINATION algorithm has been applied to problems such
as learning regularities in chemical mass spectroscopy (Mitchell 1979) and learn-
ing control rules for heuristic search (Mitchell et al. 1983). Nevertheless, prac-
tical applications of the CANDIDATE-ELIMINATION and FIND-S algorithms are lim-
ited by the fact that they both perform poorly when given noisy training data.
More importantly for our purposes here, the CANDIDATE-ELIMINATION algorithm
provides a useful conceptual framework for introducing several fundamental is-
sues in machine learning. In the remainder of this chapter we present the algo-
rithm and discuss these issues. Beginning with the next chapter, we will ex-
amine learning algorithms that are used more frequently with noisy training
data.

2.5.1 Representation
The CANDIDATE-ELIMINATION algorithm finds all describable hypotheses that are
consistent with the observed training examples. In order to define this algorithm
precisely, we begin with a few basic definitions. First, let us say that a hypothesis
is consistent with the training examples if it correctly classifies these examples.

Definition: A hypothesis h is consistent with a set of training examples D if and
only if h(x) = c(x) for each example (x, c(x)) in D.

Notice the key difference between this definition of consistent and our earlier
definition of satisfies. An example x is said to satisfy hypothesis h when h(x) = 1,
regardless of whether x is a positive or negative example of the target concept.
However, whether such an example is consistent with h depends on the target
concept, and in particular, whether h(x) = c (x) .

The CANDIDATE-ELIMINATION algorithm represents the set of all hypotheses
consistent with the observed training examples. This subset of all hypotheses is

called the version space with respect to the hypothesis space H and the training
examples D, because it contains all plausible versions of the target concept.

Dejnition: The version space, denoted V S H V D , with respect to hypothesis space H
and training examples D, is the subset of hypotheses from H consistent with the
training examples in D.

V S H , ~ = {h E HIConsistent(h, D)]

2.5.2 The LIST-THEN-ELIMINATE Algorithm
One obvious way to represent the version space is simply to list all of its members.
This leads to a simple learning algorithm, which we might call the LIST-THEN-
ELIMINATE algorithm, defined in Table 2.4.

The LIST-THEN-ELIMINATE algorithm first initializes the version space to con-
tain all hypotheses in H, then eliminates any hypothesis found inconsistent with
any training example. The version space of candidate hypotheses thus shrinks
as more examples are observed, until ideally just one hypothesis remains that is
consistent with all the observed examples. This, presumably, is the desired target
concept. If insufficient data is available to narrow the version space to a single
hypothesis, then the algorithm can output the entire set of hypotheses consistent
with the observed data.

In principle, the LIST-THEN-ELIMINATE algorithm can be applied whenever
the hypothesis space H is finite. It has many advantages, including the fact that it
is guaranteed to output all hypotheses consistent with the training data. Unfortu-
nately, it requires exhaustively enumerating all hypotheses in H-an unrealistic
requirement for all but the most trivial hypothesis spaces.

2.5.3 A More Compact Representation for Version Spaces
The CANDIDATE-ELIMINATION algorithm works on the same principle as the above
LIST-THEN-ELIMINATE algorithm. However, it employs a much more compact rep-
resentation of the version space. In particular, the version space is represented
by its most general and least general members. These members form general and
specific boundary sets that delimit the version space within the partially ordered
hypothesis space.

The LIST-THEN-ELIMINATE Algorithm
1. VersionSpace c a list containing every hypothesis in H
2. For each training example, (x , c (x))

remove from VersionSpace any hypothesis h for which h(x) # c (x)
3. Output the list of hypotheses in VersionSpace

TABLE 2.4
The LIST-THEN-ELIMINATE algorithm.

{<Sunny, Warm, ?, Strong, 7, ?> 1

<Sunny, ?, 7, Strong, 7, ?> <Sunny, Warm, ?. ?, ?, ?> <?, Warm, ?, strbng, ?, ?>

FIGURE 2.3
A version space with its general and specific boundary sets. The version space includes all six
hypotheses shown here, but can be represented more simply by S and G . Arrows indicate instances
of the more-general-than relation. This is the version space for the Enjoysport concept learning
problem and training examples described in Table 2.1.

To illustrate this representation for version spaces, consider again the En-
joysport concept learning problem described in Table 2.2. Recall that given the
four training examples from Table 2.1, FIND-S outputs the hypothesis

h = (Sunny, Warm, ?, Strong, ?, ?)

In fact, this is just one of six different hypotheses from H that are consistent
with these training examples. All six hypotheses are shown in Figure 2.3. They
constitute the version space relative to this set of data and this hypothesis repre-
sentation. The arrows among these six hypotheses in Figure 2.3 indicate instances
of the more-general~han relation. The CANDIDATE-ELIMINATION algorithm rep-
resents the version space by storing only its most general members (labeled G
in Figure 2.3) and its most specific (labeled S in the figure). Given only these
two sets S and G, it is possible to enumerate all members of the version space
as needed by generating the hypotheses that lie between these two sets in the
general-to-specific partial ordering over hypotheses.

It is intuitively plausible that we can represent the version space in terms of
its most specific and most general members. Below we define the boundary sets
G and S precisely and prove that these sets do in fact represent the version space.

Definition: The general boundary G, with respect to hypothesis space H and training
data D, is the set of maximally general members of H consistent with D.

G = {g E HIConsistent(g, D) A (-3gf E H)[(gf >, g) A Consistent(gt, D)]]

Definition: The specific boundary S, with respect to hypothesis space H and training
data D, is the set of minimally general (i.e., maximally specific) members of H
consistent with D.

S rn {s E H(Consistent(s, D) A (-3s' E H)[(s >, s f) A Consistent(st, D)])

As long as the sets G and S are well defined (see Exercise 2.7), they com-
pletely specify the version space. In particular, we can show that the version space
is precisely the set of hypotheses contained in G , plus those contained in S, plus
those that lie between G and S in the partially ordered hypothesis space. This is
stated precisely in Theorem 2.1.

Theorem 2.1. Version space representation theorem. Let X be an arbitrary set
of instances and let H be a set of boolean-valued hypotheses defined over X. Let
c : X + {O, 1) be an arbitrary target concept defined over X, and let D be an
arbitrary set of training examples {(x, c(x))). For all X, H, c, and D such that S and
G are well defined,

Proof. To prove the theorem it suffices to show that (1) every h satisfying the right-
hand side of the above expression is in V S H , ~ and (2) every member of V S H , ~
satisfies the right-hand side of the expression. To show (1) let g be an arbitrary
member of G, s be an arbitrary member of S, and h be an arbitrary member of H,
such that g 2, h 2, s. Then by the definition of S, s must be satisfied by all positive
examples in D. Because h 2, s, h must also be satisfied by all positive examples in
D. Similarly, by the definition of G, g cannot be satisfied by any negative example
in D, and because g 2, h, h cannot be satisfied by any negative example in D.
Because h is satisfied by all positive examples in D and by no negative examples
in D, h is consistent with D, and therefore h is a member of V S H , ~ . This proves
step (1). The argument for (2) is a bit more complex. It can be proven by assuming
some h in V S H , ~ that does not satisfy the right-hand side of the expression, then
showing that this leads to an inconsistency. (See Exercise 2.6.) 0

2.5.4 CANDIDATE-ELIMINATION Learning Algorithm
The CANDIDATE-ELIMINATION algorithm computes the version space containing
all hypotheses from H that are consistent with an observed sequence of training
examples. It begins by initializing the version space to the set of all hypotheses
in H; that is, by initializing the G boundary set to contain the most general
hypothesis in H

Go + {(?, ?, ?, ?, ?, ?)}

and initializing the S boundary set to contain the most specific (least general)
hypothesis

so c- ((@,PI, @,PI, 0,0)1
These two boundary sets delimit the entire hypothesis space, because every other
hypothesis in H is both more general than So and more specific than Go. As
each training example is considered, the S and G boundary sets are generalized
and specialized, respectively, to eliminate from the version space any hypothe-
ses found inconsistent with the new training example. After all examples have
been processed, the computed version space contains all the hypotheses consis-
tent with these examples and only these hypotheses. This algorithm is summarized
in Table 2.5.

CHAPTER 2 CONCEET LEARNJNG AND THE GENERAL-TO-SPECIFIC ORDERING 33

Initialize G to the set of maximally general hypotheses in H
Initialize S to the set of maximally specific hypotheses in H
For each training example d, do
0 If d is a positive example

Remove from G any hypothesis inconsistent with d ,
0 For each hypothesis s in S that is not consistent with d ,-

0 Remove s from S
0 Add to S all minimal generalizations h of s such that

0 h is consistent with d, and some member of G is more general than h
0 Remove from S any hypothesis that is more general than another hypothesis in S

0 If d is a negative example
0 Remove from S any hypothesis inconsistent with d

For each hypothesis g in G that is not consistent with d
Remove g from G

0 Add to G all minimal specializations h of g such that
0 h is consistent with d, and some member of S is more specific than h

0 Remove from G any hypothesis that is less general than another hypothesis in G

TABLE 2.5
CANDIDATE-ELIMINATION algorithm using version spaces. Notice the duality in how positive and
negative examples influence S and G.

Notice that the algorithm is specified in terms of operations such as comput-
ing minimal generalizations and specializations of given hypotheses, and identify-
ing nonrninimal and nonmaximal hypotheses. The detailed implementation of these
operations will depend, of course, on the specific representations for instances and
hypotheses. However, the algorithm itself can be applied to any concept learn-
ing task and hypothesis space for which these operations are well-defined. In the
following example trace of this algorithm, we see how such operations can be
implemented for the representations used in the EnjoySport example problem.

2.5.5 An Illustrative Example
Figure 2.4 traces the CANDIDATE-ELIMINATION algorithm applied to the first two
training examples from Table 2.1. As described above, the boundary sets are first
initialized to Go and So, the most general and most specific hypotheses in H,
respectively.

When the first training example is presented (a positive example in this
case), the CANDIDATE-ELIMINATION algorithm checks the S boundary and finds
that it is overly specific-it fails to cover the positive example. The boundary is
therefore revised by moving it to the least more general hypothesis that covers
this new example. This revised boundary is shown as S1 in Figure 2.4. No up-
date of the G boundary is needed in response to this training example because
Go correctly covers this example. When the second training example (also pos-
itive) is observed, it has a similar effect of generalizing S further to S2, leaving
G again unchanged (i.e., G2 = GI = GO). Notice the processing of these first

34 MACHINE LEARNING

S 1 : {<Sunny, Warm, Normal, Strong, Warm, Same> } 1

Training examples:

t

1 . <Sunny, Warm, Normal, Strong, Warm, Same>, Enjoy Sport = Yes

2 . <Sunny, Warm, High, Strong, Warm, Same>, Enjoy Sport = Yes

S2 :

FIGURE 2.4
CANDIDATE-ELIMINATION Trace 1. So and Go are the initial boundary sets corresponding to the most
specific and most general hypotheses. Training examples 1 and 2 force the S boundary to become
more general, as in the FIND-S algorithm. They have no effect on the G boundary.

{<Sunny, Warm, ?, Strong, Warm, Same>}

two positive examples is very similar to the processing performed by the FIND-S
algorithm.

As illustrated by these first two steps, positive training examples may force
the S boundary of the version space to become increasingly general. Negative
training examples play the complimentary role of forcing the G boundary to
become increasingly specific. Consider the third training example, shown in Fig-
ure 2.5. This negative example reveals that the G boundary of the version space
is overly general; that is, the hypothesis in G incorrectly predicts that this new
example is a positive example. The hypothesis in the G boundary must therefore
be specialized until it correctly classifies this new negative example. As shown in
Figure 2.5, there are several alternative minimally more specific hypotheses. All
of these become members of the new G3 boundary set. -

Given that there are six attributes that could be specified to specialize G2,
why are there only three new hypotheses in G3? For example, the hypothesis
h = (?, ?, Normal, ?, ?, ?) is a minimal specialization of G2 that correctly la-
bels the new example as a negative example, but it is not included in Gg. The
reason this hypothesis is excluded is that it is inconsistent with the previously
encountered positive examples. The algorithm determines this simply by noting
that h is not more general than the current specific boundary, Sz. In fact, the S
boundary of the version space forms a summary of the previously encountered
positive examples that can be used to determine whether any given hypothesis

C H m R 2 CONCEPT LEARNING AND THE GENERAL-TO-SPECIFIC ORDERING 35

s2 9 s 3 :

Training Example:

(<Sunny, Wann, ?. Strong, W a r n Same>)]

G 3:

3. <Rainy, Cold, High, Strong, Warm, Change>, EnjoySporkNo

(<Sunny, ?, ?, ?, ?, ?> <?, Wann, ?, ?, ?, ?> <?, ?, ?, ?, ?, Same>}

FIGURE 2.5
CANDIDATE-ELMNATION Trace 2. Training example 3 is a negative example that forces the G2
boundary to be specialized to G3. Note several alternative maximally general hypotheses are included
in Gj.

is consistent with these examples. Any hypothesis more general than S will, by
definition, cover any example that S covers and thus will cover any past positive
example. In a dual fashion, the G boundary summarizes the information from
previously encountered negative examples. Any hypothesis more specific than G
is assured to be consistent with past negative examples. This is true because any
such hypothesis, by definition, cannot cover examples that G does not cover.

The fourth training example, as shown in Figure 2.6, further generalizes the
S boundary of the version space. It also results in removing one member of the G
boundary, because this member fails to cover the new positive example. This last
action results from the first step under the condition "If d is a positive example"
in the algorithm shown in Table 2.5. To understand the rationale for this step, it is
useful to consider why the offending hypothesis must be removed from G. Notice
it cannot be specialized, because specializing it would not make it cover the new
example. It also cannot be generalized, because by the definition of G, any more
general hypothesis will cover at least one negative training example. Therefore,
the hypothesis must be dropped from the G boundary, thereby removing an entire
branch of the partial ordering from the version space of hypotheses remaining
under consideration.

After processing these four examples, the boundary sets S4 and G4 delimit
the version space of all hypotheses consistent with the set of incrementally ob-
served training examples. The entire version space, including those hypotheses

A

'32: I<?, ?, ?, ?, ? , ? > I

S 3: {<Sunny, Warm, ?, Strong, Warm, Same>)

I
S 4: I (<Sunny, Warm ?, Strong, ?, ?>) I

Training Example:

4. <Sunny, Warm, High, Strong, Cool, Change>, EnjoySport = Yes

FIGURE 2.6
CANDIDATE-ELIMINATION Trace 3. The positive training example generalizes the S boundary, from
S3 to S4. One member of Gg must also be deleted, because it is no longer more general than the S4
boundary.

bounded by S4 and G4, is shown in Figure 2.7. This learned version space is
independent of the sequence in which the training examples are presented (be-
cause in the end it contains all hypotheses consistent with the set of examples).
As further training data is encountered, the S and G boundaries will move mono-
tonically closer to each other, delimiting a smaller and smaller version space of
candidate hypotheses.

<Sunny, ?, ?, Strong, ?, ?> <Sunny, Warm, ?, ?, ?, ?> <?, Warm, ?, Strong, ?, ?>

s4:

{<Sunny, ?, ?, ?, ?, ?>, <?, Warm, ?, ?, ?, ?>)

{<Sunny, Warm, ?, Strong, ?, ?>)

FIGURE 2.7
The final version space for the EnjoySport concept learning problem and training examples described
earlier.

CH.4PTF.R 2 CONCEFT LEARNING AND THE GENERAL-TO-SPECIFIC ORDERING 37

2.6 REMARKS ON VERSION SPACES AND CANDIDATE-ELIMINATION
2.6.1 Will the CANDIDATE-ELIMINATION Algorithm Converge to the
Correct Hypothesis?
The version space learned by the CANDIDATE-ELIMINATION algorithm will con-
verge toward the hypothesis that correctly describes the target concept, provided
(1) there are no errors in the training examples, and (2) there is some hypothesis
in H that correctly describes the target concept. In fact, as new training examples
are observed, the version space can be monitored to determine the remaining am-
biguity regarding the true target concept and to determine when sufficient training
examples have been observed to unambiguously identify the target concept. The
target concept is exactly learned when the S and G boundary sets converge to a
single, identical, hypothesis.

What will happen if the training data contains errors? Suppose, for example,
that the second training example above is incorrectly presented as a negative
example instead of a positive example. Unfortunately, in this case the algorithm
is certain to remove the correct target concept from the version space! Because,
it will remove every hypothesis that is inconsistent with each training example, it
will eliminate the true target concept from the version space as soon as this false
negative example is encountered. Of course, given sufficient additional training
data the learner will eventually detect an inconsistency by noticing that the S and
G boundary sets eventually converge to an empty version space. Such an empty
version space indicates that there is no hypothesis in H consistent with all observed
training examples. A similar symptom will appear when the training examples are
correct, but the target concept cannot be described in the hypothesis representation
(e.g., if the target concept is a disjunction of feature attributes and the hypothesis
space supports only conjunctive descriptions). We will consider such eventualities
in greater detail later. For now, we consider only the case in which the training
examples are correct and the true target concept is present in the hypothesis space.

2.6.2 What Training Example Should the Learner Request Next?
Up to this point we have assumed that training examples are provided to the
learner by some external teacher. Suppose instead that the learner is allowed to
conduct experiments in which it chooses the next instance, then obtains the correct
classification for this instance from an external oracle (e.g., nature or a teacher).
This scenario covers situations in which the learner may conduct experiments in
nature (e.g., build new bridges and allow nature to classify them as stable or
unstable), or in which a teacher is available to provide the correct classification
(e.g., propose a new bridge and allow the teacher to suggest whether or not it will
be stable). We use the term query to refer to such instances constructed by the
learner, which are then classified by an external oracle.

Consider again the version space learned from the four training examples
of the Enjoysport concept and illustrated in Figure 2.3. What would be a good
query for the learner to pose at this point? What is a good query strategy in

general? Clearly, the learner should attempt to discriminate among the alternative
competing hypotheses in its current version space. Therefore, it should choose
an instance that would be classified positive by some of these hypotheses, but
negative by others. One such instance is

(Sunny, Warm, Normal, Light, Warm, Same)

Note that this instance satisfies three of the six hypotheses in the current
version space (Figure 2.3). If the trainer classifies this instance as a positive ex-
ample, the S boundary of the version space can then be generalized. Alternatively,
if the trainer indicates that this is a negative example, the G boundary can then be
specialized. Either way, the learner will succeed in learning more about the true
identity of the target concept, shrinking the version space from six hypotheses to
half this number.

In general, the optimal query strategy for a concept learner is to generate
instances that satisfy exactly half the hypotheses in the current version space.
When this is possible, the size of the version space is reduced by half with each
new example, and the correct target concept can therefore be found with only
rlog2JVS11 experiments. The situation is analogous to playing the game twenty
questions, in which the goal is to ask yes-no questions to determine the correct
hypothesis. The optimal strategy for playing twenty questions is to ask questions
that evenly split the candidate hypotheses into sets that predict yes and no. While
we have seen that it is possible to generate an instance that satisfies precisely
half the hypotheses in the version space of Figure 2.3, in general it may not be
possible to construct an instance that matches precisely half the hypotheses. In
such cases, a larger number of queries may be required than rlog21VS(1.

2.6.3 How Can Partially Learned Concepts Be Used?
Suppose that no additional training examples are available beyond the four in
our example above, but that the learner is now required to classify new instances
that it has not yet observed. Even though the version space of Figure 2.3 still
contains multiple hypotheses, indicating that the target concept has not yet been
fully learned, it is possible to classify certain examples with the same degree of
confidence as if the target concept had been uniquely identified. To illustrate,
suppose the learner is asked to classify the four new instances shown in Ta-
ble 2.6. 9

Note that although instance A was not among the training examples, it is
classified as a positive instance by every hypothesis in the current version space
(shown in Figure 2.3). Because the hypotheses in the version space unanimously
agree that this is a positive instance, the learner can classify instance A as positive
with the same confidence it would have if it had already converged to the single,
correct target concept. Regardless of which hypothesis in the version space is
eventually found to be the correct target concept, it is already clear that it will
classify instance A as a positive example. Notice furthermore that we need not
enumerate every hypothesis in the version space in order to test whether each

CHAPTER 2 CONCEPT LEARNING AND THE GENERAL-TO-SPECIFIC ORDERING 39

Instance Sky AirTemp Humidity Wind Water Forecast EnjoySport
-

A Sunny Warm Normal Strong Cool Change ?
B Rainy Cold Normal Light Warm Same ?
C Sunny Warm Normal Light Warm Same ?
D Sunny Cold Normal Strong Warm Same ?

TABLE 2.6
New instances to be classified.

classifies the instance as positive. This condition will be met if and only if the
instance satisfies every member of S (why?). The reason is that every other hy-
pothesis in the version space is at least as general as some member of S. By our
definition of more-general~han, if the new instance satisfies all members of S it
must also satisfy each of these more general hypotheses.

Similarly, instance B is classified as a negative instance by every hypothesis
in the version space. This instance can therefore be safely classified as negative,
given the partially learned concept. An efficient test for this condition is that the
instance satisfies none of the members of G (why?).

Instance C presents a different situation. Half of the version space hypotheses
classify it as positive and half classify it as negative. Thus, the learner cannot
classify this example with confidence until further training examples are available.
Notice that instance C is the same instance presented in the previous section as
an optimal experimental query for the learner. This is to be expected, because
those instances whose classification is most ambiguous are precisely the instances
whose true classification would provide the most new information for refining the
version space.

Finally, instance D is classified as positive by two of the version space
hypotheses and negative by the other four hypotheses. In this case we have less
confidence in the classification than in the unambiguous cases of instances A
and B. Still, the vote is in favor of a negative classification, and one approach
we could take would be to output the majority vote, perhaps with a confidence
rating indicating how close the vote was. As we will discuss in Chapter 6, if we
assume that all hypotheses in H are equally probable a priori, then such a vote
provides the most probable classification of this new instance. Furthermore, the
proportion of hypotheses voting positive can be interpreted as the probability that
this instance is positive given the training data.

2.7 INDUCTIVE BIAS
As discussed above, the CANDIDATE-ELIMINATION algorithm will converge toward
the true target concept provided it is given accurate training examples and pro-
vided its initial hypothesis space contains the target concept. What if the target
concept is not contained in the hypothesis space? Can we avoid this difficulty by
using a hypothesis space that includes every possible hypothesis? How does the

size of this hypothesis space influence the ability of the algorithm to generalize
to unobserved instances? How does the size of the hypothesis space influence the
number of training examples that must be observed? These are fundamental ques-
tions for inductive inference in general. Here we examine them in the context of
the CANDIDATE-ELIMINATION algorithm. As we shall see, though, the conclusions
we draw from this analysis will apply to any concept learning system that outputs
any hypothesis consistent with the training data.

2.7.1 A Biased Hypothesis Space
Suppose we wish to assure that the hypothesis space contains the unknown tar-
get concept. The obvious solution is to enrich the hypothesis space to include
every possible hypothesis. To illustrate, consider again the EnjoySpor t example in
which we restricted the hypothesis space to include only conjunctions of attribute
values. Because of this restriction, the hypothesis space is unable to represent
even simple disjunctive target concepts such as "Sky = Sunny or Sky = Cloudy."
In fact, given the following three training examples of this disjunctive hypothesis,
our algorithm would find that there are zero hypotheses in the version space.

Example Sky AirTemp Humidity Wind Water Forecast EnjoySport

1 Sunny Warm Normal Strong Cool Change Yes
2 Cloudy Warm Normal Strong Cool Change Yes
3 Rainy Warm Normal Strong Cool Change No

To see why there are no hypotheses consistent with these three examples,
note that the most specific hypothesis consistent with the first two examples and
representable in the given hypothesis space H is

S2 : (?, Warm, Normal, Strong, Cool, Change)

This hypothesis, although it is the maximally specific hypothesis from H that is
consistent with the first two examples, is already overly general: it incorrectly
covers the third (negative) training example. The problem is that we have biased
the learner to consider only conjunctive hypotheses. In this case we require a more
expressive hypothesis space.

2.7.2 An Unbiased Learner
The obvious solution to the problem of assuring that the target concept is in the
hypothesis space H is to provide a hypothesis space capable of representing every
teachable concept; that is, it is capable of representing every possible subset of the
instances X. In general, the set of all subsets of a set X is called thepowerset of X.

In the EnjoySport learning task, for example, the size of the instance space
X of days described by the six available attributes is 96. How many possible
concepts can be defined over this set of instances? In other words, how large is

the power set of X? In general, the number of distinct subsets that can be defined
over a set X containing 1x1 elements (i.e., the size of the power set of X) is 21'1.
Thus, there are 296, or approximately distinct target concepts that could be
defined over this instance space and that our learner might be called upon to learn.
Recall from Section 2.3 that our conjunctive hypothesis space is able to represent
only 973 of these-a very biased hypothesis space indeed!

Let us reformulate the Enjoysport learning task in an unbiased way by
defining a new hypothesis space H' that can represent every subset of instances;
that is, let H' correspond to the power set of X. One way to define such an H' is to
allow arbitrary disjunctions, conjunctions, and negations of our earlier hypotheses.
For instance, the target concept "Sky = Sunny or Sky = Cloudy" could then be
described as

(Sunny, ?, ?, ?, ?, ?) v (Cloudy, ?, ?, ?, ?, ?)

Given this hypothesis space, we can safely use the CANDIDATE-ELIMINATION
algorithm without worrying that the target concept might not be expressible. How-
ever, while this hypothesis space eliminates any problems of expressibility, it un-
fortunately raises a new, equally difficult problem: our concept learning algorithm
is now completely unable to generalize beyond the observed examples! To see
why, suppose we present three positive examples (xl, x2, x3) and two negative ex-
amples (x4, x5) to the learner. At this point, the S boundary of the version space
will contain the hypothesis which is just the disjunction of the positive examples

because this is the most specific possible hypothesis that covers these three exam-
ples. Similarly, the G boundary will consist of the hypothesis that rules out only
the observed negative examples

The problem here is that with this very expressive hypothesis representation,
the S boundary will always be simply the disjunction of the observed positive
examples, while the G boundary will always be the negated disjunction of the
observed negative examples. Therefore, the only examples that will be unambigu-
ously classified by S and G are the observed training examples themselves. In
order to converge to a single, final target concept, we will have to present every
single instance in X as a training example!

It might at first seem that we could avoid this difficulty by simply using the
partially learned version space and by taking a vote among the members of the
version space as discussed in Section 2.6.3. Unfortunately, the only instances that
will produce a unanimous vote are the previously observed training examples. For,
all the other instances, taking a vote will be futile: each unobserved instance will
be classified positive by precisely half the hypotheses in the version space and
will be classified negative by the other half (why?). To see the reason, note that
when H is the power set of X and x is some previously unobserved instance,
then for any hypothesis h in the version space that covers x, there will be anoQer

hypothesis h' in the power set that is identical to h except for its classification of
x. And of course if h is in the version space, then h' will be as well, because it
agrees with h on all the observed training examples.

2.7.3 The Futility of Bias-Free Learning
The above discussion illustrates a fundamental property of inductive inference:
a learner that makes no a priori assumptions regarding the identity of the tar-
get concept has no rational basis for classifying any unseen instances. In fact,
the only reason that the CANDIDATE-ELIMINATION algorithm was able to gener-
alize beyond the observed training examples in our original formulation of the
EnjoySport task is that it was biased by the implicit assumption that the target
concept could be represented by a conjunction of attribute values. In cases where
this assumption is correct (and the training examples are error-free), its classifica-
tion of new instances will also be correct. If this assumption is incorrect, however,
it is certain that the CANDIDATE-ELIMINATION algorithm will rnisclassify at least
some instances from X.

Because inductive learning requires some form of prior assumptions, or
inductive bias, we will find it useful to characterize different learning approaches
by the inductive biast they employ. Let us define this notion of inductive bias
more precisely. The key idea we wish to capture here is the policy by which the
learner generalizes beyond the observed training data, to infer the classification
of new instances. Therefore, consider the general setting in which an arbitrary
learning algorithm L is provided an arbitrary set of training data D, = {(x, c(x))}
of some arbitrary target concept c. After training, L is asked to classify a new
instance xi. Let L(xi, D,) denote the classification (e.g., positive or negative) that
L assigns to xi after learning from the training data D,. We can describe this
inductive inference step performed by L as follows

where the notation y + z indicates that z is inductively inferred from y. For
example, if we take L to be the CANDIDATE-ELIMINATION algorithm, D, to be
the training data from Table 2.1, and xi to be the fist instance from Table 2.6,
then the inductive inference performed in this case concludes that L(xi, D,) =
(EnjoySport = yes).

Because L is an inductive learning algorithm, the result L(xi, D,) that it in-
fers will not in general be provably correct; that is, the classification L(xi, D,) need
not follow deductively from the training data D, and the description of the new
instance xi. However, it is interesting to ask what additional assumptions could be
added to D, r\xi so that L(xi, D,) would follow deductively. We define the induc-
tive bias of L as this set of additional assumptions. More precisely, we define the

t ~ h e term inductive bias here is not to be confused with the term estimation bias commonly used in
statistics. Estimation bias will be discussed in Chapter 5.

CHAFI%R 2 CONCEPT LEARNING AND THE GENERAL-TO-SPECIFIC ORDERING 43

inductive bias of L to be the set of assumptions B such that for all new instances xi

(B A D, A x i) F L(xi , D,)

where the notation y t z indicates that z follows deductively from y (i.e., that z
is provable from y) . Thus, we define the inductive bias of a learner as the set of
additional assumptions B sufficient to justify its inductive inferences as deductive
inferences. To summarize,

Definition: Consider a concept learning algorithm L for the set of instances X. Let
c be an arbitrary concept defined over X, and let D, = ((x , c (x)) } be an arbitrary
set of training examples of c. Let L(xi, D,) denote the classification assigned to
the instance xi by L after training on the data D,. The inductive bias of L is any
minimal set of assertions B such that for any target concept c and corresponding
training examples Dc

(Vxi E X) [(B A Dc A xi) k L(xi, D,)] (2.1)

What, then, is the inductive bias of the CANDIDATE-ELIMINATION algorithm?
To answer this, let us specify L(xi , D,) exactly for this algorithm: given a set
of data D,, the CANDIDATE-ELIMINATION algorithm will first compute the version
space VSH,D,, then classify the new instance xi by a vote among hypotheses in this
version space. Here let us assume that it will output a classification for xi only if
this vote among version space hypotheses is unanimously positive or negative and
that it will not output a classification otherwise. Given this definition of L(xi , D,)
for the CANDIDATE-ELIMINATION algorithm, what is its inductive bias? It is simply
the assumption c E H. Given this assumption, each inductive inference performed
by the CANDIDATE-ELIMINATION algorithm can be justified deductively.

To see why the classification L(xi , D,) follows deductively from B = {c E
H), together with the data D, and description of the instance xi, consider the fol-
lowing argument. First, notice that if we assume c E H then it follows deductively
that c E VSH,Dc. This follows from c E H, from the definition of the version space
VSH,D, as the set of all hypotheses in H that are consistent with D,, and from our
definition of D, = {(x, c (x)) } as training data consistent with the target concept
c. Second, recall that we defined the classification L(xi , D,) to be the unanimous
vote of all hypotheses in the version space. Thus, if L outputs the classification
L (x , , D,) , it must be the case the every hypothesis in V S H , ~ , also produces this
classification, including the hypothesis c E VSHYDc. Therefore c (x i) = L(xi, D,).
To summarize, the CANDIDATE-ELIMINATION algorithm defined in this fashion can
be characterized by the following bias

Inductive bias of CANDIDATE-ELIMINATION algorithm. The target concept c is
contained in the given hypothesis space H.

Figure 2.8 summarizes the situation schematically. The inductive CANDIDATE-
ELIMINATION algorithm at the top of the figure takes two inputs: the training exam-
ples and a new instance to be classified. At the bottom of the figure, a deductive

44 MACHINE LEARNING

Inductive system
Classification of

Candidate new instance, or Training examples Elimination "don't know"

New instance Using Hypothesis
Space H

Equivalent deductive system
I I Classification of

Training examples I new instance, or
"don't know"

Theorem Prover

Assertion " Hcontains
the target concept"

-D

P
Inductive bias
made explicit

FIGURE 2.8
Modeling inductive systems by equivalent deductive systems. The input-output behavior of the
CANDIDATE-ELIMINATION algorithm using a hypothesis space H is identical to that of a deduc-
tive theorem prover utilizing the assertion " H contains the target concept." This assertion is therefore
called the inductive bias of the CANDIDATE-ELIMINATION algorithm. Characterizing inductive systems
by their inductive bias allows modeling them by their equivalent deductive systems. This provides a
way to compare inductive systems according to their policies for generalizing beyond the observed
training data.

theorem prover is given these same two inputs plus the assertion "H contains the
target concept." These two systems will in principle produce identical outputs for
every possible input set of training examples and every possible new instance in
X. Of course the inductive bias that is explicitly input to the theorem prover is
only implicit in the code of the CANDIDATE-ELIMINATION algorithm. In a sense, it
exists only in the eye of us beholders. Nevertheless, it is a perfectly well-defined
set of assertions.

One advantage of viewing inductive inference systems in terms of their
inductive bias is that it provides a nonprocedural means of characterizing their
policy for generalizing beyond the observed data. A second advantage is that it
allows comparison of different learners according to the strength of the inductive
bias they employ. Consider, for example, the following three learning algorithms,
which are listed from weakest to strongest bias.

1. ROTE-LEARNER: Learning corresponds simply to storing each observed train-
ing example in memory. Subsequent instances are classified by looking them

CHAPTER 2 CONCEPT. LEARNING AND THE GENERAL-TO-SPECIFIC ORDERING 45

up in memory. If the instance is found in memory, the stored classification
is returned. Otherwise, the system refuses to classify the new instance.

2. CANDIDATE-ELIMINATION algorithm: New instances are classified only in the
case where all members of the current version space agree on the classifi-
cation. Otherwise, the system refuses to classify the new instance.

3. FIND-S: This algorithm, described earlier, finds the most specific hypothesis
consistent with the training examples. It then uses this hypothesis to classify
all subsequent instances.

The ROTE-LEARNER has no inductive bias. The classifications it provides
for new instances follow deductively from the observed training examples, with
no additional assumptions required. The CANDIDATE-ELIMINATION algorithm has a
stronger inductive bias: that the target concept can be represented in its hypothesis
space. Because it has a stronger bias, it will classify some instances that the ROTE-
LEARNER will not. Of course the correctness of such classifications will depend
completely on the correctness of this inductive bias. The FIND-S algorithm has
an even stronger inductive bias. In addition to the assumption that the target
concept can be described in its hypothesis space, it has an additional inductive
bias assumption: that all instances are negative instances unless the opposite is
entailed by its other know1edge.t

As we examine other inductive inference methods, it is useful to keep in
mind this means of characterizing them and the strength of their inductive bias.
More strongly biased methods make more inductive leaps, classifying a greater
proportion of unseen instances. Some inductive biases correspond to categorical
assumptions that completely rule out certain concepts, such as the bias "the hy-
pothesis space H includes the target concept." Other inductive biases merely rank
order the hypotheses by stating preferences such as "more specific hypotheses are
preferred over more general hypotheses." Some biases are implicit in the learner
and are unchangeable by the learner, such as the ones we have considered here.
In Chapters 11 and 12 we will see other systems whose bias is made explicit as
a set of assertions represented and manipulated by the learner.

2.8 SUMMARY AND FURTHER READING
The main points of this chapter include:

Concept learning can be cast as a problem of searching through a large
predefined space of potential hypotheses.
The general-to-specific partial ordering of hypotheses, which can be defined
for any concept learning problem, provides a useful structure for organizing
the search through the hypothesis space.

+Notice this last inductive bias assumption involves a kind of default, or nonmonotonic reasoning.

The FINDS algorithm utilizes this general-to-specific ordering, performing
a specific-to-general search through the hypothesis space along one branch
of the partial ordering, to find the most specific hypothesis consistent with
the training examples.
The CANDIDATE-ELIMINATION algorithm utilizes this general-to-specific or-
dering to compute the version space (the set of all hypotheses consistent
with the training data) by incrementally computing the sets of maximally
specific (S) and maximally general (G) hypotheses.
Because the S and G sets delimit the entire set of hypotheses consistent with
the data, they provide the learner with a description of its uncertainty regard-
ing the exact identity of the target concept. This version space of alternative
hypotheses can be examined to determine whether the learner has converged
to the target concept, to determine when the training data are inconsistent,
to generate informative queries to further refine the version space, and to
determine which unseen instances can be unambiguously classified based on
the partially learned concept.
Version spaces and the CANDIDATE-ELIMINATION algorithm provide a useful
conceptual framework for studying concept learning. However, this learning
algorithm is not robust to noisy data or to situations in which the unknown
target concept is not expressible in the provided hypothesis space. Chap-
ter 10 describes several concept learning algorithms based on the general-
to-specific ordering, which are robust to noisy data.

0 Inductive learning algorithms are able to classify unseen examples only be-
cause of their implicit inductive bias for selecting one consistent hypothesis
over another. The bias associated with the CANDIDATE-ELIMINATION algo-
rithm is that the target concept can be found in the provided hypothesis
space (c E H). The output hypotheses and classifications of subsequent in-
stances follow deductively from this assumption together with the observed
training data.
If the hypothesis space is enriched to the point where there is a hypoth-
esis corresponding to every possible subset of instances (the power set of
the instances), this will remove any inductive bias from the CANDIDATE-
ELIMINATION algorithm. Unfortunately, this also removes the ability to clas-
sify any instance beyond the observed training examples. An unbiased learner
cannot make inductive leaps to classify unseen examples.

The idea of concept learning and using the general-to-specific ordering have
been studied for quite some time. Bruner et al. (1957) provided an early study
of concept learning in humans, and Hunt and Hovland (1963) an early effort
to automate it. Winston's (1970) widely known Ph.D. dissertation cast concept
learning as a search involving generalization and specialization operators. Plotkin
(1970, 1971) provided an early formalization of the more-general-than relation,
as well as the related notion of 8-subsumption (discussed in Chapter 10). Simon
and Lea (1973) give an early account of learning as search through a hypothesis

CHAFTER 2 CONCEPT LEARNING AND THE GENERALTO-SPECIFIC ORDEIUNG 47

space. Other early concept learning systems include (Popplestone 1969; Michal-
ski 1973; Buchanan 1974; Vere 1975; Hayes-Roth 1974). A very large number
of algorithms have since been developed for concept learning based on symbolic
representations. Chapter 10 describes several more recent algorithms for con-
cept learning, including algorithms that learn concepts represented in first-order
logic, algorithms that are robust to noisy training data, and algorithms whose
performance degrades gracefully if the target concept is not representable in the
hypothesis space considered by the learner.

Version spaces and the CANDIDATE-ELIMINATION algorithm were introduced
by Mitchell (1977, 1982). The application of this algorithm to inferring rules of
mass spectroscopy is described in (Mitchell 1979), and its application to learning
search control rules is presented in (Mitchell et al. 1983). Haussler (1988) shows
that the size of the general boundary can grow exponentially in the number of
training examples, even when the hypothesis space consists of simple conjunctions
of features. Smith and Rosenbloom (1990) show a simple change to the repre-
sentation of the G set that can improve complexity in certain cases, and Hirsh
(1992) shows that learning can be polynomial in the number of examples in some
cases when the G set is not stored at all. Subramanian and Feigenbaum (1986)
discuss a method that can generate efficient queries in certain cases by factoring
the version space. One of the greatest practical limitations of the CANDIDATE-
ELIMINATION algorithm is that it requires noise-free training data. Mitchell (1979)
describes an extension that can handle a bounded, predetermined number of mis-
classified examples, and Hirsh (1990, 1994) describes an elegant extension for
handling bounded noise in real-valued attributes that describe the training ex-
amples. Hirsh (1990) describes an INCREMENTAL VERSION SPACE MERGING algo-
rithm that generalizes the CANDIDATE-ELIMINATION algorithm to handle situations
in which training information can be different types of constraints represented
using version spaces. The information from each constraint is represented by a
version space and the constraints are then combined by intersecting the version
spaces. Sebag (1994, 1996) presents what she calls a disjunctive version space ap-
proach to learning disjunctive concepts from noisy data. A separate version space
is learned for each positive training example, then new instances are classified
by combining the votes of these different version spaces. She reports experiments
in several problem domains demonstrating that her approach is competitive with
other widely used induction methods such as decision tree learning and k-NEAREST
NEIGHBOR.

EXERCISES
2.1. Explain why the size of the hypothesis space in the EnjoySport learning task is

973. How would the number of possible instances and possible hypotheses increase
with the addition of the attribute Watercurrent, which can take on the values
Light, Moderate, or Strong? More generally, how does the number of possible
instances and hypotheses grow with the addition of a new attribute A that takes on
k possible values? ,

I

2.2. Give the sequence of S and G boundary sets computed by the CANDIDATE-ELIMINA-
TION algorithm if it is given the sequence of training examples from Table 2.1 in
reverse order. Although the final version space will be the same regardless of the
sequence of examples (why?), the sets S and G computed at intermediate stages
will, of course, depend on this sequence. Can you come up with ideas for ordering
the training examples to minimize the sum of the sizes of these intermediate S and
G sets for the H used in the EnjoySport example?

2.3. Consider again the EnjoySport learning task and the hypothesis space H described
in Section 2.2. Let us define a new hypothesis space H' that consists of all painvise
disjunctions of the hypotheses in H . For example, a typical hypothesis in H' is

(?, Cold, H i g h , ?, ?, ?) v (Sunny, ?, H i g h , ?, ?, Same)

Trace the CANDIDATE-ELIMINATION algorithm for the hypothesis space H' given the
sequence of training examples from Table 2.1 (i.e., show the sequence of S and G
boundary sets.)

2.4. Consider the instance space consisting of integer points in the x , y plane and the
set of hypotheses H consisting of rectangles. More precisely, hypotheses are of the
form a 5 x 5 b, c 5 y 5 d , where a , b, c, and d can be any integers.
(a) Consider the version space with respect to the set of positive (+) and negative

(-) training examples shown below. What is the S boundary of the version space
in this case? Write out the hypotheses and draw them in on the diagram.

(b) What is the G boundary of this version space? Write out the hypotheses and
draw them in.

(c) Suppose the learner may now suggest a new x , y instance and ask the trainer for
its classification. Suggest a query guaranteed to reduce the size of the version
space, regardless of how the trainer classifies it. Suggest one that will not.

(d) Now assume you are a teacher, attempting to teach a particular target concept
(e.g., 3 5 x 5 5 , 2 (y 5 9). What is the smallest number of training examples
you can provide so that the CANDIDATE-ELIMINATION algorithm will perfectly
learn the target concept?

2.5. Consider the following sequence of positive and negative training examples describ-
ing the concept "pairs of people who live in the same house." Each training example
describes an ordered pair of people, with each person described by their sex, hair

CHAPTER 2 CONCEPT LEARNING AND THE GENERAL-TO-SPECIFIC ORDERING 49

color (black, brown, or blonde), height (tall, medium, or short), and nationality (US,
French, German, Irish, Indian, Japanese, or Portuguese).

+ ((male brown tall US) (f emale black short US))

+ ((male brown short French)(female black short US))
- ((female brown tall German)(f emale black short Indian))

+ ((male brown tall Irish) (f emale brown short Irish))

Consider a hypothesis space defined over these instances, in which each hy-
pothesis is represented by a pair of Ctuples, and where each attribute constraint may
be a specific value, "?," or "0," just as in the EnjoySport hypothesis representation.
For example, the hypothesis

((male ? tall ?)(female ? ? Japanese))

represents the set of all pairs of people where the first is a tall male (of any nationality
and hair color), and the second is a Japanese female (of any hair color and height).
(a) Provide a hand trace of the CANDIDATE-ELIMINATION algorithm learning from

the above training examples and hypothesis language. In particular, show the
specific and general boundaries of the version space after it has processed the
first training example, then the second training example, etc.

(b) How many distinct hypotheses from the given hypothesis space are consistent
with the following single positive training example?

+ ((male black short Portuguese)(f emale blonde tall Indian))

(c) Assume the learner has encountered only the positive example from part (b),
and that it is now allowed to query the trainer by generating any instance and
asking the trainer to classify it. Give a specific sequence of queries that assures
the learner will converge to the single correct hypothesis, whatever it may be
(assuming that the target concept is describable within the given hypothesis
language). Give the shortest sequence of queries you can find. How does the
length of this sequence relate to your answer to question (b)?

(d) Note that this hypothesis language cannot express all concepts that can be defined
over the instances (i.e., we can define sets of positive and negative examples for
which there is no corresponding describable hypothesis). If we were to enrich
the language so that it could express all concepts that can be defined over the
instance language, then how would your answer to (c) change?

2.6. Complete the proof of the version space representation theorem (Theorem 2.1).
Consider a concept learning problem in which each instance is a real number, and in
which each hypothesis is an interval over the reals. More precisely, each hypothesis
in the hypothesis space H is of the form a < x < b, where a and b are any real
constants, and x refers to the instance. For example, the hypothesis 4.5 < x < 6.1
classifies instances between 4.5 and 6.1 as positive, and others as negative. Explain
informally why there cannot be a maximally specific consistent hypothesis for any
set of positive training examples. Suggest a slight modification to the hypothesis
representation so that there will be. 'C

50 MACHINE LEARNING

2.8. In this chapter, we commented that given an unbiased hypothesis space (the power
set of the instances), the learner would find that each unobserved instance would
match exactly half the current members of the version space, regardless of which
training examples had been observed. Prove this. In particular, prove that for any
instance space X, any set of training examples D, and any instance x E X not present
in D, that if H is the power set of X, then exactly half the hypotheses in V S H , D will
classify x as positive and half will classify it as negative.

2.9. Consider a learning problem where each instance is described by a conjunction of
n boolean attributes a1 . . .a,. Thus, a typical instance would be

(al = T) A (az = F) A . . . A (a, = T)

Now consider a hypothesis space H in which each hypothesis is a disjunction of
constraints over these attributes. For example, a typical hypothesis would be

Propose an algorithm that accepts a sequence of training examples and outputs
a consistent hypothesis if one exists. Your algorithm should run in time that is
polynomial in n and in the number of training examples.

2.10. Implement the FIND-S algorithm. First verify that it successfully produces the trace in
Section 2.4 for the Enjoysport example. Now use this program to study the number
of random training examples required to exactly learn the target concept. Implement
a training example generator that generates random instances, then classifies them
according to the target concept:

(Sunny, Warm, ?, ?, ?, ?)

Consider training your FIND-S program on randomly generated examples and mea-
suring the number of examples required before the program's hypothesis is identical
to the target concept. Can you predict the average number of examples required?
Run the experiment at least 20 times and report the mean number of examples re-
quired. How do you expect this number to vary with the number of "?" in the
target concept? How would it vary with the number of attributes used to describe
instances and hypotheses?

REFERENCES
Bruner, J. S., Goodnow, J. J., & Austin, G. A. (1957). A study of thinking. New York: John Wiey

& Sons.
Buchanan, B. G. (1974). Scientific theory formation by computer. In J. C. Simon (Ed.), Computer

Oriented Learning Processes. Leyden: Noordhoff.
Gunter, C. A., Ngair, T., Panangaden, P., & Subramanian, D. (1991). The common order-theoretic

structure of version spaces and ATMS's. Proceedings of the National Conference on Artijicial
Intelligence (pp. 500-505). Anaheim.

Haussler, D. (1988). Quantifying inductive bias: A1 learning algorithms and Valiant's learning frame-
work. Artijicial Intelligence, 36, 177-221.

Hayes-Roth, F. (1974). Schematic classification problems and their solution. Pattern Recognition, 6,
105-113.

Hirsh, H. (1990). Incremental version space merging: A general framework for concept learning.
Boston: Kluwer.

Hirsh, H. (1991). Theoretical underpinnings of version spaces. Proceedings of the 12th IJCAI
(pp. 665-670). Sydney.

Hirsh, H. (1994). Generalizing version spaces. Machine Learning, 17(1), 5 4 6 .
Hunt, E. G., & Hovland, D. I. (1963). Programming a model of human concept formation. In

E. Feigenbaum & J. Feldman (Eds.), Computers and thought (pp. 310-325). New York: Mc-
Graw Hill.

Michalski, R. S. (1973). AQVALI1: Computer implementation of a variable valued logic system VL1
and examples of its application to pattern recognition. Proceedings of the 1st International Joint
Conference on Pattern Recognition (pp. 3-17).

Mitchell, T. M. (1977). Version spaces: A candidate elimination approach to rule learning. Fijlh
International Joint Conference on AI @p. 305-310). Cambridge, MA: MIT Press.

Mitchell, T. M. (1979). Version spaces: An approach to concept learning, (F'h.D. dissertation). Elec-
trical Engineering Dept., Stanford University, Stanford, CA.

Mitchell, T. M. (1982). Generalization as search. ArtQcial Intelligence, 18(2), 203-226.
Mitchell, T. M., Utgoff, P. E., & Baneji, R. (1983). Learning by experimentation: Acquiring and

modifying problem-solving heuristics. In Michalski, Carbonell, & Mitchell (Eds.), Machine
Learning (Vol. 1, pp. 163-190). Tioga Press.

Plotkin, G. D. (1970). A note on inductive generalization. In Meltzer & Michie (Eds.), Machine
Intelligence 5 (pp. 153-163). Edinburgh University Press.

Plotkin, G. D. (1971). A further note on inductive generalization. In Meltzer & Michie (Eds.), Machine
Intelligence 6 (pp. 104-124). Edinburgh University Press.

Popplestone, R. J. (1969). An experiment in automatic induction. In Meltzer & Michie (Eds.), Machine
Intelligence 5 (pp. 204-215). Edinburgh University Press.

Sebag, M. (1994). Using constraints to build version spaces. Proceedings of the 1994 European
Conference on Machine Learning. Springer-Verlag.

Sebag, M. (1996). Delaying the choice of bias: A disjunctive version space approach. Proceedings of
the 13th International Conference on Machine Learning (pp. 444-452). San Francisco: Morgan
Kaufmann.

Simon, H. A,, & Lea, G. (1973). Problem solving and rule induction: A unified view. In Gregg (Ed.),
Knowledge and Cognition (pp. 105-127). New Jersey: Lawrence Erlbaum Associates.

Smith, B. D., & Rosenbloom, P. (1990). Incremental non-backtracking focusing: A polynomially
bounded generalization algorithm for version spaces. Proceedings of the 1990 National Con-
ference on ArtQcial Intelligence (pp. 848-853). Boston.

Subramanian, D., & Feigenbaum, J. (1986). Factorization in experiment generation. Proceedings of
the I986 National Conference on ArtQcial Intelligence (pp. 518-522). Morgan Kaufmann.

Vere, S. A. (1975). Induction of concepts in the predicate calculus. Fourth International Joint Con-
ference on AI (pp. 281-287). Tbilisi, USSR.

Winston, P. H. (1970). Learning structural descriptions from examples, (Ph.D. dissertation). [MIT
Technical Report AI-TR-2311.

CHAPTER

DECISION TREE
LEARNING

Decision tree learning is one of the most widely used and practical methods for
inductive inference. It is a method for approximating discrete-valued functions that
is robust to noisy data and capable of learning disjunctive expressions. This chapter
describes a family of decision tree learning algorithms that includes widely used
algorithms such as ID3, ASSISTANT, and C4.5. These decision tree learning meth-
ods search a completely expressive hypothesis space and thus avoid the difficulties
of restricted hypothesis spaces. Their inductive bias is a preference for small trees
over large trees.

3.1 INTRODUCTION
Decision tree learning is a method for approximating discrete-valued target func-
tions, in which the learned function is represented by a decision tree. Learned trees
can also be re-represented as sets of if-then rules to improve human readability.
These learning methods are among the most popular of inductive inference algo-
rithms and have been successfully applied to a broad range of tasks from learning
to diagnose medical cases to learning to assess credit risk of loan applicants.

3.2 DECISION TREE REPRESENTATION
Decision trees classify instances by sorting them down the tree from the root to
some leaf node, which provides the classification of the instance. Each node in the
tree specifies a test of some attribute of the instance, and each branch descending

CHAPTER 3 DECISION TREE LEARNING 53

Noma1 Strong Weak

No
\

Yes
/

No
\

Yes

FIGURE 3.1
A decision tree for the concept PlayTennis. An example is classified by sorting it through the tree
to the appropriate leaf node, then returning the classification associated with this leaf (in this case,
Yes or No). This tree classifies Saturday mornings according to whether or not they are suitable for
playing tennis.

from that node corresponds to one of the possible values for this attribute. An
instance is classified by starting at the root node of the tree, testing the attribute
specified by this node, then moving down the tree branch corresponding to the
value of the attribute in the given example. This process is then repeated for the
subtree rooted at the new node.

Figure 3.1 illustrates a typical learned decision tree. This decision tree clas-
sifies Saturday mornings according to whether they are suitable for playing tennis.
For example, the instance

(Outlook = Sunny, Temperature = Hot, Humidity = High, Wind = Strong)

would be sorted down the leftmost branch of this decision tree and would therefore
be classified as a negative instance (i.e., the tree predicts that PlayTennis = no).
This tree and the example used in Table 3.2 to illustrate the ID3 learning algorithm
are adapted from (Quinlan 1986).

In general, decision trees represent a disjunction of conjunctions of con-
straints on the attribute values of instances. Each path from the tree root to a leaf
corresponds to a conjunction of attribute tests, and the tree itself to a disjunc-
tion of these conjunctions. For example, the decision tree shown in Figure 3.1
corresponds to the expression

(Outlook = Sunny A Humidity = Normal)

V (Outlook = Overcast)

v (Outlook = Rain A Wind = Weak)

54 MACHINE LEARNWG

3.3 APPROPRIATE PROBLEMS FOR DECISION TREE LEARNING
Although a variety of decision tree learning methods have been developed with
somewhat differing capabilities and requirements, decision tree learning is gener-
ally best suited to problems with the following characteristics:

Znstances are represented by attribute-value pairs. Instances are described by
a fixed set of attributes (e.g., Temperature) and their values (e.g., Hot). The
easiest situation for decision tree learning is when each attribute takes on a
small number of disjoint possible values (e.g., Hot, Mild, Cold). However,
extensions to the basic algorithm (discussed in Section 3.7.2) allow handling
real-valued attributes as well (e.g., representing Temperature numerically).
The targetfunction has discrete output values. The decision tree in Figure 3.1
assigns a boolean classification (e.g., yes or no) to each example. Decision
tree methods easily extend to learning functions with more than two possible
output values. A more substantial extension allows learning target functions
with real-valued outputs, though the application of decision trees in this
setting is less common.

0 Disjunctive descriptions may be required. As noted above, decision trees
naturally represent disjunctive expressions.

0 The training data may contain errors. Decision tree learning methods are
robust to errors, both errors in classifications of the training examples and
errors in the attribute values that describe these examples.

0 The training data may contain missing attribute values. Decision tree meth-
ods can be used even when some training examples have unknown values
(e.g., if the Humidity of the day is known for only some of the training
examples). This issue is discussed in Section 3.7.4.

Many practical problems have been found to fit these characteristics. De-
cision tree learning has therefore been applied to problems such as learning to
classify medical patients by their disease, equipment malfunctions by their cause,
and loan applicants by their likelihood of defaulting on payments. Such problems,
in which the task is to classify examples into one of a discrete set of possible
categories, are often referred to as classijication problems.

The remainder of this chapter is organized as follows. Section 3.4 presents
the basic ID3 algorithm for learning decision trees and illustrates its operation
in detail. Section 3.5 examines the hypothesis space search performed by this
learning algorithm, contrasting it with algorithms from Chapter 2. Section 3.6
characterizes the inductive bias of this decision tree learning algorithm and ex-
plores more generally an inductive bias called Occam's razor, which corresponds
to a preference for the most simple hypothesis. Section 3.7 discusses the issue of
overfitting the training data, as well as strategies such as rule post-pruning to deal
with this problem. This section also discusses a number of more advanced topics
such as extending the algorithm to accommodate real-valued attributes, training
data with unobserved attributes, and attributes with differing costs.

CHAPTER 3 DECISION TREE LEARMNG 55

3.4 THE BASIC DECISION TREE LEARNING ALGORITHM
Most algorithms that have been developed for learning decision trees are vari-
ations on a core algorithm that employs a top-down, greedy search through the
space of possible decision trees. This approach is exemplified by the ID3 algorithm
(Quinlan 1986) and its successor C4.5 (Quinlan 1993), which form the primary
focus of our discussion here. In this section we present the basic algorithm for
decision tree learning, corresponding approximately to the ID3 algorithm. In Sec-
tion 3.7 we consider a number of extensions to this basic algorithm, including
extensions incorporated into C4.5 and other more recent algorithms for decision
tree learning.

Our basic algorithm, ID3, learns decision trees by constructing them top-
down, beginning with the question "which attribute should be tested at the root
of the tree?'To answer this question, each instance attribute is evaluated using
a statistical test to determine how well it alone classifies the training examples.
The best attribute is selected and used as the test at the root node of the tree.
A descendant of the root node is then created for each possible value of this
attribute, and the training examples are sorted to the appropriate descendant node
(i.e., down the branch corresponding to the example's value for this attribute).
The entire process is then repeated using the training examples associated with
each descendant node to select the best attribute to test at that point in the tree.
This forms a greedy search for an acceptable decision tree, in which the algorithm
never backtracks to reconsider earlier choices. A simplified version of the algo-
rithm, specialized to learning boolean-valued functions (i.e., concept learning), is
described in Table 3.1.

3.4.1 Which Attribute Is the Best Classifier?
The central choice in the ID3 algorithm is selecting which attribute to test at
each node in the tree. We would like to select the attribute that is most useful
for classifying examples. What is a good quantitative measure of the worth of
an attribute? We will define a statistical property, called informution gain, that
measures how well a given attribute separates the training examples according to
their target classification. ID3 uses this information gain measure to select among
the candidate attributes at each step while growing the tree.

3.4.1.1 ENTROPY MEASURES HOMOGENEITY OF EXAMPLES

In order to define information gain precisely, we begin by defining a measure com-
monly used in information theory, called entropy, that characterizes the (im)purity
of an arbitrary collection of examples. Given a collection S, containing positive
and negative examples of some target concept, the entropy of S relative to this
boolean classification is

ID3(Examples, Targetattribute, Attributes)
Examples are the training examples. Targetattribute is the attribute whose value is to be
predicted by the tree. Attributes is a list of other attributes that may be tested by the learned
decision tree. Returns a decision tree that correctly classiJies the given Examples.

Create a Root node for the tree
I f all Examples are positive, Return the single-node tree Root, with label = +
I f all Examples are negative, Return the single-node tree Root, with label = -
I f Attributes is empty, Return the single-node tree Root, with label = most common value of
Targetattribute in Examples
Otherwise Begin

A t the attribute from Attributes that best* classifies Examples
0 The decision attribute for Root c A

For each possible value, vi, of A,
Add a new tree branch below Root, corresponding to the test A = vi

0 Let Examples,, be the subset of Examples that have value vi for A
If Examples,, is empty

Then below this new branch add a leaf node with label = most common
value of Target attribute in Examples
Else below this new branch add the subtree

ID3(Examples,,, Targetattribute, Attributes - (A)))
End
Return Root

* The best attribute is the one with highest information gain, as defined in Equation (3.4).

TABLE 3.1
Summary of the ID3 algorithm specialized to learning boolean-valued functions. ID3 is a greedy
algorithm that grows the tree top-down, at each node selecting the attribute that best classifies the
local training examples. This process continues until the tree perfectly classifies the training examples,
or until all attributes have been used.

where p, is the proportion of positive examples in S and p, is the proportion of
negative examples in S. In all calculations involving entropy we define 0 log 0 to
be 0.

To illustrate, suppose S is a collection of 14 examples of some boolean
concept, including 9 positive and 5 negative examples (we adopt the notation
[9+, 5-1 to summarize such a sample of data). Then the entropy of S relative to
this boolean classification is

Notice that the entropy is 0 if all members of S belong to the same class. For
example, if all members are positive (pe = I), then p, is 0, and Entropy(S) =
-1 . log2(1) - 0 . log2 0 = -1 . 0 - 0 . log2 0 = 0. Note the entropy is 1 when
the collection contains an equal number of positive and negative examples. If
the collection contains unequal numbers of positive and negative examples, the

CHAPTER 3 DECISION TREE LEARNING 57

FIGURE 3.2
The entropy function relative to a boolean classification,

0.0 0.5 LO as the proportion, pe, of positive examples varies
pe between 0 and 1.

entropy is between 0 and 1. Figure 3.2 shows the form of the entropy function
relative to a boolean classification, as p, varies between 0 and 1.

One interpretation of entropy from information theory is that it specifies the
minimum number of bits of information needed to encode the classification of
an arbitrary member of S (i.e., a member of S drawn at random with uniform
probability). For example, if p, is 1, the receiver knows the drawn example will
be positive, so no message need be sent, and the entropy is zero. On the other hand,
if pe is 0.5, one bit is required to indicate whether the drawn example is positive
or negative. If pe is 0.8, then a collection of messages can be encoded using on
average less than 1 bit per message by assigning shorter codes to collections of
positive examples and longer codes to less likely negative examples.

Thus far we have discussed entropy in the special case where the target
classification is boolean. More generally, if the target attribute can take on c
different values, then the entropy of S relative to this c-wise classification is
defined as

C

Entropy(S) - -pi log, pi
i=l

where pi is the proportion of S belonging to class i . Note the logarithm is still
base 2 because entropy is a measure of the expected encoding length measured
in bits. Note also that if the target attribute can take on c possible values, the
entropy can be as large as log, c.

3.4.1.2 INFORMATION GAIN MEASURES THE EXPECTED REDUCTION
IN ENTROPY

Given entropy as a measure of the impurity in a collection of training examples,
we can now define a measure of the effectiveness of an attribute in classifying
the training data. The measure we will use, called information gain, is simply the
expected reduction in entropy caused by partitioning the examples according to
this attribute. More precisely, the information gain, Gain(S, A) of an attribute A,

relative to a collection of examples S, is defined as

ISVl Gain(S, A) I Entropy(S) - -Entropy (S,)
IS1

(3.4)
veValues(A)

where Values(A) is the set of all possible values for attribute A, and S, is the
subset of S for which attribute A has value v (i.e., S, = { s E SIA(s) = v)) . Note
the first term in Equation (3.4) is just the entropy of the original collection S,
and the second term is the expected value of the entropy after S is partitioned
using attribute A. The expected entropy described by this second term is simply
the sum of the entropies of each subset S,, weighted by the fraction of examples

that belong to S,. Gain(S, A) is therefore the expected reduction in entropy
caused by knowing the value of attribute A. Put another way, Gain(S, A) is the
information provided about the target &action value, given the value of some
other attribute A. The value of Gain(S, A) is the number of bits saved when
encoding the target value of an arbitrary member of S, by knowing the value of
attribute A.

For example, suppose S is a collection of training-example days described by
attributes including Wind, which can have the values Weak or Strong. As before,
assume S is a collection containing 14 examples, [9+, 5-1. Of these 14 examples,
suppose 6 of the positive and 2 of the negative examples have Wind = Weak, and
the remainder have Wind = Strong. The information gain due to sorting the
original 14 examples by the attribute Wind may then be calculated as

Values(Wind) = Weak, Strong

IS, l Gain(S, Wind) = Entropy(S) - -Entropy(S,)
v ~ (W e a k , S t r o n g] Is1

Information gain is precisely the measure used by ID3 to select the best attribute at
each step in growing the tree. The use of information gain to evaluate the relevance
of attributes is summarized in Figure 3.3. In this figure the information gain of two
different attributes, Humidity and Wind, is computed in order to determine which
is the better attribute for classifying the training examples shown in Table 3.2.

CHAPTER 3 DECISION TREE LEARNING 59

Which attribute is the best classifier?

S: [9+,5-I
E =0.940

Humidity

High

[3+,4-I [6t , l - l
E S.985 E S .592

Gain (S, Hurnidiry)

S: [9+,5-I
E S .940 wx Strong

[6+,2-I [3+,3-I
ES.811 E =1.00

Gain (S, Wind)
= ,940 - (8/14).811 - (6114)l.O
= ,048

FIGURE 3.3
Humidity provides greater information gain than Wind, relative to the target classification. Here, E
stands for entropy and S for the original collection of examples. Given an initial collection S of 9
positive and 5 negative examples, [9+, 5-1, sorting these by their Humidity produces collections of
[3+, 4-1 (Humidity = High) and [6+, 1-1 (Humidity = Normal). The information gained by this
partitioning is .151, compared to a gain of only .048 for the attribute Wind.

3.4.2 An Illustrative Example
To illustrate the operation of ID3, consider the learning task represented by the
training examples of Table 3.2. Here the target attribute PlayTennis, which can
have values yes or no for different Saturday mornings, is to be predicted based
on other attributes of the morning in question. Consider the first step through

Day Outlook Temperature Humidity Wind PlayTennis

D l Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Overcast Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool Normal Weak Yes
D6 Rain Cool Normal Strong No
D7 Overcast Cool Normal Strong Yes
D8 Sunny Mild High Weak No
D9 Sunny Cool Normal Weak Yes
Dl0 Rain Mild Normal Weak Yes
Dl1 Sunny Mild Normal Strong Yes
Dl2 Overcast Mild High Strong Yes
Dl3 Overcast Hot Normal Weak Yes
Dl4 Rain Mild High Strong No

TABLE 3.2
Training examples for the target concept PlayTennis.

the algorithm, in which the topmost node of the decision tree is created. Which
attribute should be tested first in the tree? ID3 determines the information gain for
each candidate attribute (i.e., Outlook, Temperature, Humidity, and Wind), then
selects the one with highest information gain. The computation of information
gain for two of these attributes is shown in Figure 3.3. The information gain
values for all four attributes are

Gain(S, Outlook) = 0.246

Gain(S, Humidity) = 0.151

Gain(S, Wind) = 0.048

Gain(S, Temperature) = 0.029
where S denotes the collection of training examples from Table 3.2.

According to the information gain measure, the Outlook attribute provides
the best prediction of the target attribute, PlayTennis, over the training exam-
ples. Therefore, Outlook is selected as the decision attribute for the root node,
and branches are created below the root for each of its possible values (i.e.,
Sunny, Overcast, and Rain). The resulting partial decision tree is shown in Fig-
ure 3.4, along with the training examples sorted to each new descendant node.
Note that every example for which Outlook = Overcast is also a positive ex-
ample of PlayTennis. Therefore, this node of the tree becomes a leaf node with
the classification PlayTennis = Yes. In contrast, the descendants corresponding to
Outlook = Sunny and Outlook = Rain still have nonzero entropy, and the decision
tree will be further elaborated below these nodes.

The process of selecting a new attribute and partitioning the training exam-
ples is now repeated for each nontenninal descendant node, this time using only
the training examples associated with that node. Attributes that have been incor-
porated higher in the tree are excluded, so that any given attribute can appear at
most once along any path through the tree. This process continues for each new
leaf node until either of two conditions is met: (1) every attribute has already been
included along this path through the tree, or (2) the training examples associated
with this leaf node all have the same target attribute value (i.e., their entropy
is zero). Figure 3.4 illustrates the computations of information gain for the next
step in growing the decision tree. The final decision tree learned by ID3 from the
14 training examples of Table 3.2 is shown in Figure 3.1.

3.5 HYPOTHESIS SPACE SEARCH IN DECISION TREE
LEARNING
As with other inductive learning methods, ID3 can be characterized as searching a
space of hypotheses for one that fits the training examples. The hypothesis space
searched by ID3 is the set of possible decision trees. ID3 performs a simple-to-
complex, hill-climbing search through this hypothesis space, beginning with the
empty tree, then considering progressively more elaborate hypotheses in search of
a decision tree that correctly classifies the training data. The evaluation function

{Dl, D2, ..., Dl41
P+S-I

Which attribute should be tested here?

Gain (Ssunnyj Temperaare) = ,970 - (215) 0.0 - (Y5) 1.0 - (115) 0.0 = ,570

Gain (Sss,,,, Wind) = 970 - (215) 1.0 - (315) ,918 = ,019

FIGURE 3.4
The partially learned decision tree resulting from the first step of ID3. The training examples are
sorted to the corresponding descendant nodes. The Overcast descendant has only positive examples
and therefore becomes a leaf node with classification Yes. The other two nodes will be further
expanded, by selecting the attribute with highest information gain relative to the new subsets of
examples.

that guides this hill-climbing search is the information gain measure. This search
is depicted in Figure 3.5.

By viewing ID^ in terms of its search space and search strategy, we can get
some insight into its capabilities and limitations.

1 ~ 3 ' s hypothesis space of all decision trees is a complete space of finite
discrete-valued functions, relative to the available attributes. Because every
finite discrete-valued function can be represented by some decision tree, ID3
avoids one of the major risks of methods that search incomplete hypothesis
spaces (such as methods that consider only conjunctive hypotheses): that the
hypothesis space might not contain the target function.
ID3 maintains only a single current hypothesis as it searches through the
space of decision trees. This contrasts, for example, with the earlier ver-
sion space candidate-~l i rn inat -od, which maintains the set of all
hypotheses consistent with the available training examples. By determin-
ing only a single hypothesis, ID^ loses the capabilities that follow from

F: + - + FIGURE 3.5
Hypothesis space search by ID3.
ID3 searches throuah the mace of -
possible decision trees from simplest
to increasingly complex, guided by the information gain heuristic.

explicitly representing all consistent hypotheses. For example, it does not
have the ability to determine how many alternative decision trees are con-
sistent with the available training data, or to pose new instance queries that
optimally resolve among these competing hypotheses.

0 ID3 in its pure form performs no backtracking in its search. Once it,se-
lects an attribute to test at a particular level in the tree, it never backtracks
to reconsider this choice. Therefore, it is susceptible to the usual risks of
hill-climbing search without backtracking: converging to locally optimal so-
lutions that are not globally optimal. In the case of ID3, a locally optimal
solution corresponds to the decision tree it selects along the single search
path it explores. However, this locally optimal solution may be less desir-
able than trees that would have been encountered along a different branch of
the search. Below we discuss an extension that adds a form of backtracking
(post-pruning the decision tree).

0 ID3 uses all training examples at each step in the search to make statistically
based decisions regarding how to refine its current hypothesis. This contrasts
with methods that make decisions incrementally, based on individual train-
ing examples (e.g., FIND-S or CANDIDATE-ELIMINATION). One advantage of
using statistical properties of all the examples (e.g., information gain) is that
the resulting search is much less sensitive to errors in individual training
examples. ID3 can be easily extended to handle noisy training data by mod-
ifying its termination criterion to accept hypotheses that imperfectly fit the
training data.

3.6 INDUCTIVE BIAS IN DECISION TREE LEARNING
What is the policy by which ID3 generalizes from observed training examples
to classify unseen instances? In other words, what is its inductive bias? Recall
from Chapter 2 that inductive bias is the set of assumptions that, together with
the training data, deductively justify the classifications assigned by the learner to
future instances.

Given a collection of training examples, there are typically many decision
trees consistent with these examples. Describing the inductive bias of ID3 there-
fore consists of describing the basis by which it chooses one of these consis-
tent hypotheses over the others. Which of these decision trees does ID3 choose?
It chooses the first acceptable tree it encounters in its simple-to-complex, hill-
climbing search through the space of possible trees. Roughly speaking, then, the
ID3 search strategy (a) selects in favor of shorter trees over longer ones, and
(b) selects trees that place the attributes with highest information gain closest to
the root. Because of the subtle interaction between the attribute selection heuris-
tic used by ID3 and the particular training examples it encounters, it is difficult
to characterize precisely the inductive bias exhibited by ID3. However, we can
approximately characterize its bias as a preference for short decision trees over
complex trees.

Approximate inductive bias of ID3: Shorter trees are preferred over larger trees.

In fact, one could imagine an algorithm similar to ID3 that exhibits precisely
this inductive bias. Consider an algorithm that begins with the empty tree and
searches breadth Jirst through progressively more complex trees, first considering
all trees of depth 1, then all trees of depth 2, etc. Once it finds a decision tree
consistent with the training data, it returns the smallest consistent tree at that
search depth (e.g., the tree with the fewest nodes). Let us call this breadth-first
search algorithm BFS-ID3. BFS-ID3 finds a shortest decision tree and thus exhibits
precisely the bias "shorter trees are preferred over longer trees." ID3 can be
viewed as an efficient approximation to BFS-ID3, using a greedy heuristic search
to attempt to find the shortest tree without conducting the entire breadth-first
search through the hypothesis space.

Because ID3 uses the information gain heuristic and a hill climbing strategy,
it exhibits a more complex bias than BFS-ID3. In particular, it does not always
find the shortest consistent tree, and it is biased to favor trees that place attributes
with high information gain closest to the root.

A closer approximation to the inductive bias of ID3: Shorter trees are preferred
over longer trees. Trees that place high information gain attributes close to the root
are preferred over those that do not.

3.6.1 Restriction Biases and Preference Biases
There is an interesting difference between the types of inductive bias exhibited
by ID3 and by the CANDIDATE-ELIMINATION algorithm discussed in Chapter 2.

Consider the difference between the hypothesis space search in these two ap-
proaches:

ID3 searches a complete hypothesis space (i.e., one capable of expressing
any finite discrete-valued function). It searches incompletely through this
space, from simple to complex hypotheses, until its termination condition is
met (e.g., until it finds a hypothesis consistent with the data). Its inductive
bias is solely a consequence of the ordering of hypotheses by its search
strategy. Its hypothesis space introduces no additional bias.

0 The version space CANDIDATE-ELIMINATION algorithm searches an incom-
plete hypothesis space (i.e., one that can express only a subset of the poten-
tially teachable concepts). It searches this space completely, finding every
hypothesis consistent with the training data. Its inductive bias is solely a
consequence of the expressive power of its hypothesis representation. Its
search strategy introduces no additional bias.

In brief, the inductive bias of ID3 follows from its search strategy, whereas
the inductive bias of the CANDIDATE-ELIMINATION algorithm follows from the def-
inition of its search space.

The inductive bias of ID3 is thus a preference for certain hypotheses over
others (e.g., for shorter hypotheses), with no hard restriction on the hypotheses that
can be eventually enumerated. This form of bias is typically called a preference
bias (or, alternatively, a search bias). In contrast, the bias of the CANDIDATE-
ELIMINATION algorithm is in the form of a categorical restriction on the set of
hypotheses considered. This form of bias is typically called a restriction bias (or,
alternatively, a language bias).

Given that some form of inductive bias is required in order to generalize
beyond the training data (see Chapter 2), which type of inductive bias shall we
prefer; a preference bias or restriction bias?

Typically, a preference bias is more desirable than a restriction bias, be-
cause it allows the learner to work within a complete hypothesis space that is
assured to contain the unknown target function. In contrast, a restriction bias that
strictly limits the set of potential hypotheses is generally less desirable, because
it introduces the possibility of excluding the unknown target function altogether.

Whereas ID3 exhibits a purely preference bias and CANDIDATE-ELIMINATION
a purely restriction bias, some learning systems combine both. Consider, for ex-
ample, the program described in Chapter 1 for learning a numerical evaluation
function for game playing. In this case, the learned evaluation function is repre-
sented by a linear combination of a fixed set of board features, and the learning
algorithm adjusts the parameters of this linear combination to best fit the available
training data. In this case, the decision to use a linear function to represent the eval-
uation function introduces a restriction bias (nonlinear evaluation functions cannot
be represented in this form). At the same time, the choice of a particular parameter
tuning method (the LMS algorithm in this case) introduces a preference bias stem-
ming from the ordered search through the space of all possible parameter values.

3.6.2 Why Prefer Short Hypotheses?
Is ID3's inductive bias favoring shorter decision trees a sound basis for generaliz-
ing beyond the training data? Philosophers and others have debated this question
for centuries, and the debate remains unresolved to this day. William of Occam
was one of the first to discusst the question, around the year 1320, so this bias
often goes by the name of Occam's razor.

Occam's razor: Prefer the simplest hypothesis that fits the data.

Of course giving an inductive bias a name does not justify it. Why should one
prefer simpler hypotheses? Notice that scientists sometimes appear to follow this
inductive bias. Physicists, for example, prefer simple explanations for the motions
of the planets, over more complex explanations. Why? One argument is that
because there are fewer short hypotheses than long ones (based on straightforward
combinatorial arguments), it is less likely that one will find a short hypothesis that
coincidentally fits the training data. In contrast there are often many very complex
hypotheses that fit the current training data but fail to generalize correctly to
subsequent data. Consider decision tree hypotheses, for example. There are many
more 500-node decision trees than 5-node decision trees. Given a small set of
20 training examples, we might expect to be able to find many 500-node deci-
sion trees consistent with these, whereas we would be more surprised if a 5-node
decision tree could perfectly fit this data. We might therefore believe the 5-node
tree is less likely to be a statistical coincidence and prefer this hypothesis over
the 500-node hypothesis.

Upon closer examination, it turns out there is a major difficulty with the
above argument. By the same reasoning we could have argued that one should
prefer decision trees containing exactly 17 leaf nodes with 11 nonleaf nodes, that
use the decision attribute A1 at the root, and test attributes A2 through Al l , in
numerical order. There are relatively few such trees, and we might argue (by the
same reasoning as above) that our a priori chance of finding one consistent with
an arbitrary set of data is therefore small. The difficulty here is that there are very
many small sets of hypotheses that one can define-most of them rather arcane.
Why should we believe that the small set of hypotheses consisting of decision
trees with short descriptions should be any more relevant than the multitude of
other small sets of hypotheses that we might define?

A second problem with the above argument for Occam's razor is that the size
of a hypothesis is determined by the particular representation used internally by
the learner. Two learners using different internal representations could therefore
anive at different hypotheses, both justifying their contradictory conclusions by
Occam's razor! For example, the function represented by the learned decision
tree in Figure 3.1 could be represented as a tree with just one decision node, by a
learner that uses the boolean attribute XYZ, where we define the attribute XYZ to

~ ~ p r e n t l ~ while shaving.

be true for instances that are classified positive by the decision tree in Figure 3.1
and false otherwise. Thus, two learners, both applying Occam's razor, would
generalize in different ways if one used the XYZ attribute to describe its examples
and the other used only the attributes Outlook, Temperature, Humidity, and Wind.

This last argument shows that Occam's razor will produce two different
hypotheses from the same training examples when it is applied by two learners
that perceive these examples in terms of different internal representations. On this
basis we might be tempted to reject Occam's razor altogether. However, consider
the following scenario that examines the question of which internal representa-
tions might arise from a process of evolution and natural selection. Imagine a
population of artificial learning agents created by a simulated evolutionary pro-
cess involving reproduction, mutation, and natural selection of these agents. Let
us assume that this evolutionary process can alter the perceptual systems of these
agents from generation to generation, thereby changing the internal attributes by
which they perceive their world. For the sake of argument, let us also assume that
the learning agents employ a fixed learning algorithm (say ID3) that cannot be
altered by evolution. It is reasonable to assume that over time evolution will pro-
duce internal representation that make these agents increasingly successful within
their environment. Assuming that the success of an agent depends highly on its
ability to generalize accurately, we would therefore expect evolution to develop
internal representations that work well with whatever learning algorithm and in-
ductive bias is present. If the species of agents employs a learning algorithm whose
inductive bias is Occam's razor, then we expect evolution to produce internal rep-
resentations for which Occam's razor is a successful strategy. The essence of the
argument here is that evolution will create internal representations that make the
learning algorithm's inductive bias a self-fulfilling prophecy, simply because it
can alter the representation easier than it can alter the learning algorithm.

For now, we leave the debate regarding Occam's razor. We will revisit it in
Chapter 6, where we discuss the Minimum Description Length principle, a version
of Occam's razor that can be interpreted within a Bayesian framework.

3.7 ISSUES IN DECISION TREE LEARNING
Practical issues in learning decision trees include determining how deeply to grow
the decision tree, handling continuous attributes, choosing an appropriate attribute
selection measure, andling training data with missing attribute values, handling
attributes with differing costs, and improving computational efficiency. Below
we discuss each of these issues and extensions to the basic ID3 algorithm that
address them. ID3 has itself been extended to address most of these issues, with
the resulting system renamed C4.5 (Quinlan 1993).

3.7.1 Avoiding Overfitting the Data
The algorithm described in Table 3.1 grows each branch of the tree just deeply
enough to perfectly classify the training examples. While this is sometimes a

reasonable strategy, in fact it can lead to difficulties when there is noise in the data,
or when the number of training examples is too small to produce a representative
sample of the true target function. In either of these cases, this simple algorithm
can produce trees that overjt the training examples.

We will say that a hypothesis overfits the training examples if some other
hypothesis that fits the training examples less well actually performs better over the
entire distribution of instances (i.e., including instances beyond the training set).

Definition: Given a hypothesis space H, a hypothesis h E H is said to overlit the
training data if there exists some alternative hypothesis h' E H, such that h has
smaller error than h' over the training examples, but h' has a smaller error than h
over the entire distribution of instances.

Figure 3.6 illustrates the impact of overfitting in a typical application of deci-
sion tree learning. In this case, the ID3 algorithm is applied to the task of learning
which medical patients have a form of diabetes. The horizontal axis of this plot
indicates the total number of nodes in the decision tree, as the tree is being con-
structed. The vertical axis indicates the accuracy of predictions made by the tree.
The solid line shows the accuracy of the decision tree over the training examples,
whereas the broken line shows accuracy measured over an independent set of test
examples (not included in the training set). Predictably, the accuracy of the tree
over the training examples increases monotonically as the tree is grown. How-
ever, the accuracy measured over the independent test examples first increases,
then decreases. As can be seen, once the tree size exceeds approximately 25 nodes,

On training data -
On test data ---- i

Size of tree (number of nodes)

FIGURE 3.6
Overfitting in decision tree learning. As ID3 adds new nodes to grow the decision tree, the accuracy of
the tree measured over the training examples increases monotonically. However, when measured over
a set of test examples independent of the training examples, accuracy first increases, then decreases.
Software and data for experimenting with variations on this plot are available on the World Wide
Web at http://www.cs.cmu.edu/-torn/mlbook.html.

further elaboration of the tree decreases its accuracy over the test examples despite
increasing its accuracy on the training examples.

How can it be possible for tree h to fit the training examples better than h',
but for it to perform more poorly over subsequent examples? One way this can
occur is when the training examples contain random errors or noise. To illustrate,
consider the effect of adding the following positive training example, incorrectly
labeled as negative, to the (otherwise correct) examples in Table 3.2.

(Outlook = Sunny, Temperature = Hot , Humidity = Normal,

Wind = Strong, PlayTennis = No)

Given the original error-free data, ID3 produces the decision tree shown in Fig-
ure 3.1. However, the addition of this incorrect example will now cause ID3 to
construct a more complex tree. In particular, the new example will be sorted into
the second leaf node from the left in the learned tree of Figure 3.1, along with the
previous positive examples D9 and Dl 1. Because the new example is labeled as
a negative example, ID3 will search for further refinements to the tree below this
node. Of course as long as the new erroneous example differs in some arbitrary
way from the other examples affiliated with this node, ID3 will succeed in finding
a new decision attribute to separate out this new example from the two previous
positive examples at this tree node. The result is that ID3 will output a decision
tree (h) that is more complex than the original tree from Figure 3.1 (h'). Of course
h will fit the collection of training examples perfectly, whereas the simpler h' will
not. However, given that the new decision node is simply a consequence of fitting
the noisy training example, we expect h to outperform h' over subsequent data
drawn from the same instance distribution.

The above example illustrates how random noise in the training examples
can lead to overfitting. In fact, overfitting is possible even when the training data
are noise-free, especially when small numbers of examples are associated with leaf
nodes. In this case, it is quite possible for coincidental regularities to occur, in
which some attribute happens to partition the examples very well, despite being
unrelated to the actual target function. Whenever such coincidental regularities
exist, there is a risk of overfitting.

Overfitting is a significant practical difficulty for decision tree learning and
many other learning methods. For example, in one experimental study of ID3
involving five different learning tasks with noisy, nondeterministic data (Mingers
1989b), overfitting was found to decrease the accuracy of learned decision trees
by 10-25% on most problems.

There are several approaches to avoiding overfitting in decision tree learning.
These can be grouped into two classes:

approaches that stop growing the tree earlier, before it reaches the point
where it perfectly classifies the training data,

0 approaches that allow the tree to overfit the data, and then post-prune the
tree.

Although the first of these approaches might seem.more direct, the second
approach of post-pruning overfit trees has been found to be more successful in
practice. This is due to the difficulty in the first approach of estimating precisely
when to stop growing the tree.

Regardless of whether the correct tree size is found by stopping early or
by post-pruning, a key question is what criterion is to be used to determine the
correct final tree size. Approaches include:

0 Use a separate set of examples, distinct from the training examples, to eval-
uate the utility of post-pruning nodes from the tree.

0 Use all the available data for training, but apply a statistical test to estimate
whether expanding (or pruning) a particular node is likely to produce an
improvement beyond the training set. For example, Quinlan (1986) uses a
chi-square test to estimate whether further expanding a node is likely to
improve performance over the entire instance distribution, or only on the
current sample of training data.

0 Use an explicit measure of the complexity for encoding the training exam-
ples and the decision tree, halting growth of the tree when this encoding
size is minimized. This approach, based on a heuristic called the Minimum
Description Length principle, is discussed further in Chapter 6, as well as
in Quinlan and Rivest (1989) and Mehta et al. (199.5).

The first of the above approaches is the most common and is often referred
to as a training and validation set approach. We discuss the two main variants of
this approach below. In this approach, the available data are separated into two
sets of examples: a training set, which is used to form the learned hypothesis, and
a separate validation set, which is used to evaluate the accuracy of this hypothesis
over subsequent data and, in particular, to evaluate the impact of pruning this
hypothesis. The motivation is this: Even though the learner may be misled by
random errors and coincidental regularities within the training set, the validation
set is unlikely to exhibit the same random fluctuations. Therefore, the validation
set can be expected to provide a safety check against overfitting the spurious
characteristics of the training set. Of course, it is important that the validation set
be large enough to itself provide a statistically significant sample of the instances.
One common heuristic is to withhold one-third of the available examples for the
validation set, using the other two-thirds for training.

3.7.1.1 REDUCED ERROR PRUNING

How exactly might we use a validation set to prevent overfitting? One approach,
called reduced-error pruning (Quinlan 1987), is to consider each of the decision
nodes in the.tree to be candidates for pruning. Pruning a decision node consists of
removing the subtree rooted at that node, making it a leaf node, and assigning it
the most common classification of the training examples affiliated with that node.
Nodes are removed only if the resulting pruned tree performs no worse than-the

original over the validation set. This has the effect that any leaf node added due
to coincidental regularities in the training set is likely to be pruned because these
same coincidences are unlikely to occur in the validation set. Nodes are pruned
iteratively, always choosing the node whose removal most increases the decision
tree accuracy over the validation set. Pruning of nodes continues until further
pruning is harmful (i.e., decreases accuracy of the tree over the validation set).

The impact of reduced-error pruning on the accuracy of the decision tree
is illustrated in Figure 3.7. As in Figure 3.6, the accuracy of the tree is shown
measured over both training examples and test examples. The additional line in
Figure 3.7 shows accuracy over the test examples as the tree is pruned. When
pruning begins, the tree is at its maximum size and lowest accuracy over the test
set. As pruning proceeds, the number of nodes is reduced and accuracy over the
test set increases. Here, the available data has been split into three subsets: the
training examples, the validation examples used for pruning the tree, and a set of
test examples used to provide an unbiased estimate of accuracy over future unseen
examples. The plot shows accuracy over the training and test sets. Accuracy over
the validation set used for pruning is not shown.

Using a separate set of data to guide pruning is an effective approach pro-
vided a large amount of data is available. The major drawback of this approach
is that when data is limited, withholding part of it for the validation set reduces
even further the number of examples available for training. The following section
presents an alternative approach to pruning that has been found useful in many
practical situations where data is limited. Many additional techniques have been
proposed as well, involving partitioning the available data several different times in

7

---..--..._.._.._~~
" .------.------- 2--... -, .--.. -..... -... .-...

_____..
--... -.... --... -.___._..___...-_--------

On training data -
On test data ----

On test data (during pruning) - - - - -

0 10 20 30 40 50 60 70 80 90 100

Size of tree (number of nodes)

FIGURE 3.7
Effect of reduced-error pruning in decision tree learning. This plot shows the same curves of training
and test set accuracy as in Figure 3.6. In addition, it shows the impact of reduced error pruning of
the tree produced by ID3. Notice the increase in accuracy over the test set as nodes are pruned from
the tree. Here, the validation set used for pruning is distinct from both the training and test sets.

multiple ways, then averaging the results. Empirical evaluations of alternative tree
pruning methods are reported by Mingers (1989b) and by Malerba et al. (1995).

3.7.1.2 RULE POST-PRUNING

In practice, one quite successful method for finding high accuracy hypotheses is
a technique we shall call rule post-pruning. A variant of this pruning method is
used by C4.5 (Quinlan 1993), which is an outgrowth of the original ID3 algorithm.
Rule post-pruning involves the following steps:

1. Infer the decision tree from the training set, growing the tree until the training
data is fit as well as possible and allowing overfitting to occur.

2. Convert the learned tree into an equivalent set of rules by creating one rule
for each path from the root node to a leaf node.

3. Prune (generalize) each rule by removing any preconditions that result in
improving its estimated accuracy.

4. Sort the pruned rules by their estimated accuracy, and consider them in this
sequence when classifying subsequent instances.

To illustrate, consider again the decision tree in Figure 3.1. In rule post-
pruning, one rule is generated for each leaf node in the tree. Each attribute test
along the path from the root to the leaf becomes a rule antecedent (precondition)
and the classification at the leaf node becomes the rule consequent (postcondition).
For example, the leftmost path of the tree in Figure 3.1 is translated into the rule

IF (Outlook = Sunny) A (Humidity = High)

THEN PlayTennis = No

Next, each such rule is pruned by removing any antecedent, or precondi-
tion, whose removal does not worsen its estimated accuracy. Given the above
rule, for example, rule post-pruning would consider removing the preconditions
(Outlook = Sunny) and (Humidity = High). It would select whichever of these
pruning steps produced the greatest improvement in estimated rule accuracy, then
consider pruning the second precondition as a further pruning step. No pruning
step is performed if it reduces the estimated rule accuracy.

As noted above, one method to estimate rule accuracy is to use a validation
set of examples disjoint from the training set. Another method, used by C4.5,
is to evaluate performance based on the training set itself, using a pessimistic
estimate to make up for the fact that the training data gives an estimate biased
in favor of the rules. More precisely, C4.5 calculates its pessimistic estimate by
calculating the rule accuracy over the training examples to which it applies, then
calculating the standard deviation in this estimated accuracy assuming a binomial
distribution. For a given confidence level, the lower-bound estimate is then taken
as the measure of rule performance (e.g., for a 95% confidence interval, rule
accuracy is pessimistically estimated by the observed accuracy over the training

set, minus 1.96 times the estimated standard deviation). The net effect is that for
large data sets, the pessimistic estimate is very close to the observed accuracy
(e.g., the standard deviation is very small), whereas it grows further from the
observed accuracy as the size of the data set decreases. Although this heuristic
method is not statistically valid, it has nevertheless been found useful in practice.
See Chapter 5 for a discussion of statistically valid approaches to estimating means
and confidence intervals.

Why convert the decision tree to rules before pruning? There are three main
advantages.

Converting to rules allows distinguishing among the different contexts in
which a decision node is used. Because each distinct path through the deci-
sion tree node produces a distinct rule, the pruning decision regarding that
attribute test can be made differently for each path. In contrast, if the tree
itself were pruned, the only two choices would be to remove the decision
node completely, or to retain it in its original form.
Converting to rules removes the distinction between attribute tests that occur
near the root of the tree and those that occur near the leaves. Thus, we avoid
messy bookkeeping issues such as how to reorganize the tree if the root node
is pruned while retaining part of the subtree below this test.
Converting to rules improves readability. Rules are often easier for
to understand.

3.7.2 Incorporating Continuous-Valued Attributes
Our initial definition of ID3 is restricted to attributes that take on a discrete set
of values. First, the target attribute whose value is predicted by the learned tree
must be discrete valued. Second, the attributes tested in the decision nodes of
the tree must also be discrete valued. This second restriction can easily be re-
moved so that continuous-valued decision attributes can be incorporated into the
learned tree. This can be accomplished by dynamically defining new discrete-
valued attributes that partition the continuous attribute value into a discrete set
of intervals. In particular, for an attribute A that is continuous-valued, the algo-
rithm can dynamically create a new boolean attribute A, that is true if A < c
and false otherwise. The only question is how to select the best value for the
threshold c.

As an example, suppose we wish to include the continuous-valued attribute
Temperature in describing the training example days in the learning task of Ta-
ble 3.2. Suppose further that the training examples associated with a particular
node in the decision tree have the following values for Temperature and the target
attribute PlayTennis.

Temperature: 40 48 60 72 80 90
PlayTennis: No No Yes Yes Yes NO

CHAPTER 3 DECISION TREE LEARNING 73

What threshold-based boolean attribute should be defined based on Temper-
ature? Clearly, we would like to pick a threshold, c, that produces the greatest
information gain. By sorting the examples according to the continuous attribute
A , then identifying adjacent examples that differ in their target classification, we
can generate a set of candidate thresholds midway between the corresponding
values of A. It can be shown that the value of c that maximizes information gain
must always lie at such a boundary (Fayyad 1991). These candidate thresholds
can then be evaluated by computing the information gain associated with each.
In the current example, there are two candidate thresholds, corresponding to the
values of Temperature at which the value of PlayTennis changes: (48 + 60)/2,
and (80 + 90)/2. The information gain can then be computed for each of the
candidate attributes, T e m p e r a t ~ r e , ~ ~ and Tempera t~re ,~~ , and the best can be
selected (Temperat~re ,~~) . This dynamically created boolean attribute can then
compete with the other discrete-valued candidate attributes available for growing
the decision tree. Fayyad and Irani (1993) discuss an extension to this approach
that splits the continuous attribute into multiple intervals rather than just two in-
tervals based on a single threshold. Utgoff and Brodley (1991) and Murthy et al.
(1994) discuss approaches that define features by thresholding linear combinations
of several continuous-valued attributes.

3.7.3 Alternative Measures for Selecting Attributes
There is a natural bias in the information gain measure that favors attributes with
many values over those with few values. As an extreme example, consider the
attribute Date, which has a very large number of possible values (e.g., March 4,
1979). If we were to add this attribute to the data in Table 3.2, it would have
the highest information gain of any of the attributes. This is because Date alone
perfectly predicts the target attribute over the training data. Thus, it would be
selected as the decision attribute for the root node of the tree and lead to a (quite
broad) tree of depth one, which perfectly classifies the training data. Of course,
this decision tree would fare poorly on subsequent examples, because it is not a
useful predictor despite the fact that it perfectly separates the training data.

What is wrong with the attribute Date? Simply put, it has so many possible
values that it is bound to separate the training examples into very small subsets.
Because of this, it will have a very high information gain relative to the training
examples, despite being a very poor predictor of the target function over unseen
instances.

One way to avoid this difficulty is to select decision attributes based on some
measure other than information gain. One alternative measure that has been used
successfully is the gain ratio (Quinlan 1986). The gain ratio measure penalizes
attributes such as Date by incorporating a term, called split informution, that is
sensitive to how broadly and uniformly the attribute splits the data:

74 MACHINE LEARNING

where S1 through S, are the c subsets of examples resulting from partitioning S
by the c-valued attribute A. Note that Splitlnfomzation is actually the entropy of
S with respect to the values of attribute A. This is in contrast to our previous
uses of entropy, in which we considered only the entropy of S with respect to the
target attribute whose value is to be predicted by the learned tree.

The Gain Ratio measure is defined in terms of the earlier Gain measure, as
well as this Splitlnfomzation, as follows

Gain (S, A)
GainRatio(S, A) r Split Inf ormation(S, A)

Notice that the Splitlnfomzation term discourages the selection of attributes with
many uniformly distributed values. For example, consider a collection of n ex-
amples that are completely separated by attribute A (e.g., Date). In this case, the
Splitlnfomzation value will be log, n. In contrast, a boolean attribute B that splits
the same n examples exactly in half will have Splitlnfomzation of 1. If attributes
A and B produce the same information gain, then clearly B will score higher
according to the Gain Ratio measure.

One practical issue that arises in using GainRatio in place of Gain to
select attributes is that the denominator can be zero or very small when ISi 1 x IS1
for one of the Si. This either makes the GainRatio undefined or very large for
attributes that happen to have the same value for nearly all members of S. To
avoid selecting attributes purely on this basis, we can adopt some heuristic such
as first calculating the Gain of each attribute, then applying the GainRatio test
only considering those attributes with above average Gain (Quinlan 1986).

An alternative to the GainRatio, designed to directly address the above
difficulty, is a distance-based measure introduced by Lopez de Mantaras (1991).
This measure is based on defining a distance metric between partitions of'the
data. Each attribute is evaluated based on the distance between the data partition
it creates and the perfect partition (i.e., the partition that perfectly classifies the
training data). The attribute whose partition is closest to the perfect partition is
chosen. Lopez de Mantaras (1991) defines this distance measure, proves that it
is not biased toward attributes with large numbers of values, and reports experi-
mental studies indicating that the predictive accuracy of the induced trees is not
significantly different from that obtained with the Gain and Gain Ratio measures.
However, this distance measure avoids the practical difficulties associated with the
GainRatio measure, and in his experiments it produces significantly smaller trees
in the case of data sets whose attributes have very different numbers of values.

A variety of other selection measures have been proposed as well (e.g.,
see Breiman et al. 1984; Mingers 1989a; Kearns and Mansour 1996; Dietterich
et al. 1996). Mingers (1989a) provides an experimental analysis of the relative
effectiveness of several selection measures over a variety of problems. He reports
significant differences in the sizes of the unpruned trees produced by the different
selection measures. However, in his experimental domains the choice of attribute
selection measure appears to have a smaller impact on final accuracy than does
the extent and method of post-pruning.

CHAPTER 3 DECISION TREE LEARNING 75

3.7.4 Handling Training Examples with Missing Attribute Values
In certain cases, the available data may be missing values for some attributes.
For example, in a medical domain in which we wish to predict patient outcome
based on various laboratory tests, it may be that the lab test Blood-Test-Result is
available only for a subset of the patients. In such cases, it is common to estimate
the missing attribute value based on other examples for which this attribute has a
known value.

Consider the situation in which Gain(S, A) is to be calculated at node n in
the decision tree to evaluate whether the attribute A is the best attribute to test
at this decision node. Suppose that (x , c (x)) is one of the training examples in S
and that the value A(x) is unknown.

One strategy for dealing with the missing attribute value is to assign it the
value that is most common among training examples at node n. Alternatively, we
might assign it the most common value among examples at node n that have the
classification c (x) . The elaborated training example using this estimated value for
A(x) can then be used directly by the existing decision tree learning algorithm.
This strategy is examined by Mingers (1989a).

A second, more complex procedure is to assign a probability to each of the
possible values of A rather than simply assigning the most common value to A(x).
These probabilities can be estimated again based on the observed frequencies of
the various values for A among the examples at node n. For example, given a
boolean attribute A, if node n contains six known examples with A = 1 and four
with A = 0, then we would say the probability that A(x) = 1 is 0.6, and the
probability that A(x) = 0 is 0.4. A fractional 0.6 of instance x is now distributed
down the branch for A = 1, and a fractional 0.4 of x down the other tree branch.
These fractional examples are used for the purpose of computing information
Gain and can be further subdivided at subsequent branches of the tree if a second
missing attribute value must be tested. This same fractioning of examples can
also be applied after learning, to classify new instances whose attribute values
are unknown. In this case, the classification of the new instance is simply the
most probable classification, computed by summing the weights of the instance
fragments classified in different ways at the leaf nodes of the tree. This method
for handling missing attribute values is used in C4.5 (Quinlan 1993).

3.7.5 Handling Attributes with Differing Costs
In some learning tasks the instance attributes may have associated costs. For
example, in learning to classify medical diseases we might describe patients in
terms of attributes such as Temperature, BiopsyResult, Pulse, BloodTestResults,
etc. These attributes vary significantly in their costs, both in terms of monetary
cost and cost to patient comfort. In such tasks, we would prefer decision trees that
use low-cost attributes where possible, relying on high-cost attributes only when
needed to produce reliable classifications.

ID3 can be modified to take into account attribute costs by introducing a cost
term into the attribute selection measure. For example, we might divide the Gpin

by the cost of the attribute, so that lower-cost attributes would be preferred. While
such cost-sensitive measures do not guarantee finding an optimal cost-sensitive
decision tree, they do bias the search in favor of low-cost attributes.

Tan and Schlimmer (1990) and Tan (1993) describe one such approach and
apply it to a robot perception task in which the robot must learn to classify dif-
ferent objects according to how they can be grasped by the robot's manipulator.
In this case the attributes correspond to different sensor readings obtained by a
movable sonar on the robot. Attribute cost is measured by the number of seconds
required to obtain the attribute value by positioning and operating the sonar. They
demonstrate that more efficient recognition strategies are learned, without sacri-
ficing classification accuracy, by replacing the information gain attribute selection
measure by the following measure

Cost (A)
Nunez (1988) describes a related approach and its application to learning

medical diagnosis rules. Here the attributes are different symptoms and laboratory
tests with differing costs. His system uses a somewhat different attribute selection
measure

2 G a W S . A) - 1
(Cost(A) +

where w E [0, 11 is a constant that determines the relative importance of cost
versus information gain. Nunez (1991) presents an empirical comparison of these
two approaches over a range of tasks.

3.8 SUMMARY AND FURTHER READING
The main points of this chapter include:

Decision tree learning provides a practical method for concept learning and
for learning other discrete-valued functions. The ID3 family of algorithms
infers decision trees by growing them from the root downward, greedily
selecting the next best attribute for each new decision branch added to the
tree.
ID3 searches a complete hypothesis space (i.e., the space of decision trees
can represent any discrete-valued function defined over discrete-valued in-
stances). It thereby avoids the major difficulty associated with approaches
that consider only restricted sets of hypotheses: that the target function might
not be present in the hypothesis space.
The inductive bias implicit in ID3 includes a preference for smaller trees;
that is, its search through the hypothesis space grows the tree only as large
as needed in order to classify the available training examples.
Overfitting the training data is an important issue in decision tree learning.
Because the training examples are only a sample of all possible instances,

CHAFER 3 DECISION TREE LEARNING 77

it is possible to add branches to the tree that improve performance on the
training examples while decreasing performance on other instances outside
this set. Methods for post-pruning the decision tree are therefore important
to avoid overfitting in decision tree learning (and other inductive inference
methods that employ a preference bias).
A large variety of extensions to the basic ID3 algorithm has been developed
by different researchers. These include methods for post-pruning trees, han-
dling real-valued attributes, accommodating training examples with miss-
ing attribute values, incrementally refining decision trees as new training
examples become available, using attribute selection measures other than
information gain, and considering costs associated with instance attributes.

Among the earliest work on decision tree learning is Hunt's Concept Learn-
ing System (CLS) (Hunt et al. 1966) and Friedman and Breiman's work resulting
in the CART system (Friedman 1977; Breiman et al. 1984). Quinlan's ID3 sys-
tem (Quinlan 1979, 1983) forms the basis for the discussion in this chapter. Other
early work on decision tree learning includes ASSISTANT (Kononenko et al. 1984;
Cestnik et al. 1987). Implementations of decision tree induction algorithms are
now commercially available on many computer platforms.

For further details on decision tree induction, an excellent book by Quinlan
(1993) discusses many practical issues and provides executable code for C4.5.
Mingers (1989a) and Buntine and Niblett (1992) provide two experimental studies
comparing different attribute-selection measures. Mingers (1989b) and Malerba et
al. (1995) provide studies of different pruning strategies. Experiments comparing
decision tree learning and other learning methods can be found in numerous
papers, including (Dietterich et al. 1995; Fisher and McKusick 1989; Quinlan
1988a; Shavlik et al. 1991; Thrun et al. 1991; Weiss and Kapouleas 1989).

EXERCISES
Give decision trees to represent the following boolean functions:
(a) A A -B
(b) A V [B A C]
(c) A X O R B
(d) [A A B] v [C A Dl
Consider the following set of training examples:

Instance Classification a1 a2

(a) What is the entropy of this collection of training examples with respect to the
target function classification?

(b) What is the information gain of a2 relative to these training examples?
3.3. True or false: If decision tree D2 is an elaboration of tree Dl, then D l is more-

general-than D2. Assume D l and D2 are decision trees representing arbitrary boolean
functions, and that D2 is an elaboration of D l if ID3 could extend D l into D2. If true,
give a proof; if false, a counterexample. (More-general-than is defined in Chapter 2.)

3.4. ID3 searches for just one consistent hypothesis, whereas the CANDIDATE-
ELIMINATION algorithm finds all consistent hypotheses. Consider the correspondence
between these two learning algorithms.
(a) Show the decision tree that would be learned by ID3 assuming it is given the

four training examples for the Enjoy Sport? target concept shown in Table 2.1
of Chapter 2.

(b) What is the relationship between the learned decision tree and the version space
(shown in Figure 2.3 of Chapter 2) that is learned from these same examples?
Is the learned tree equivalent to one of the members of the version space?

(c) Add the following training example, and compute the new decision tree. This
time, show the value of the information gain for each candidate attribute at each
step in growing the tree.

Sky Air-Temp Humidity Wind Water Forecast Enjoy-Sport?
Sunny Warm Normal Weak Warm Same No

(d) Suppose we wish to design a learner that (like ID3) searches a space of decision
tree hypotheses and (like CANDIDATE-ELIMINATION) finds all hypotheses con-
sistent with the data. In short, we wish to apply the CANDIDATE-ELIMINATION
algorithm to searching the space of decision tree hypotheses. Show the S and
G sets that result from the first training example from Table 2.1. Note S must
contain the most specific decision trees consistent with the data, whereas G must
contain the most general. Show how the S and G sets are refined by thesecond
training example (you may omit syntactically distinct trees that describe the same
concept). What difficulties do you foresee in applying CANDIDATE-ELIMINATION
to a decision tree hypothesis space?

REFERENCES
Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, P. 1. (1984). ClassiJication and regression

trees. Belmont, CA: Wadsworth International Group.
Brodley, C. E., & Utgoff, P. E. (1995). Multivariate decision trees. Machine Learning, 19, 45-77.
Buntine, W., & Niblett, T. (1992). A further comparison of splitting rules for decision-tree induction.

Machine Learning, 8, 75-86.
Cestnik, B., Kononenko, I., & Bratko, I. (1987). ASSISTANT-86: A knowledge-elicitation tool for

sophisticated users. In I. Bratko & N. LavraE (Eds.), Progress in machine learning. Bled,
Yugoslavia: Sigma Press.

Dietterich, T. G., Hild, H., & Bakiri, G. (1995). A comparison of ID3 and BACKPROPAGATION for
English text-to-speech mapping. Machine Learning, 18(1), 51-80.

Dietterich, T. G., Kearns, M., & Mansour, Y. (1996). Applying the weak learning framework to
understand and improve C4.5. Proceedings of the 13th International Conference on Machine
Learning (pp. 96104). San Francisco: Morgan Kaufmann.

Fayyad, U. M. (1991). On the induction of decision trees for multiple concept leaning, (Ph.D. dis-
sertation). EECS Department, University of Michigan.

C m 3 DECISION TREE LEARNING 79

Fayyad, U. M., & Irani, K. B. (1992). On the handling of continuous-valued attributes in decision
tree generation. Machine Learning, 8, 87-102.

Fayyad, U. M., & Irani, K. B. (1993). Multi-interval discretization of continuous-valued attributes
for classification learning. In R. Bajcsy (Ed.), Proceedings of the 13th International Joint
Conference on ArtiJcial Intelligence (pp. 1022-1027). Morgan-Kaufmann.

Fayyad, U. M., Weir, N., & Djorgovski, S. (1993). SKICAT: A machine learning system for auto-
mated cataloging of large scale sky surveys. Proceedings of the Tenth International Conference
on Machine Learning (pp. 112-1 19). Amherst, MA: Morgan Kaufmann.

Fisher, D. H., and McKusick, K. B. (1989). An empirical comparison of ID3 and back-propagation.
Proceedings of the Eleventh International Joint Conference on A1 (pp. 788-793). Morgan
Kaufmann.

Fnedman, J. H. (1977). A recursive partitioning decision rule for non-parametric classification. IEEE
Transactions on Computers @p. 404408).

Hunt, E. B. (1975). Art$cial Intelligence. New Yorc Academic Press.
Hunt, E. B., Marin, J., & Stone, P. J. (1966). Experiments in Induction. New York: Academic Press.
Kearns, M., & Mansour, Y. (1996). On the boosting ability of top-down decision tree learning

algorithms. Proceedings of the 28th ACM Symposium on the Theory of Computing. New York:
ACM Press.

Kononenko, I., Bratko, I., & Roskar, E. (1984). Experiments in automatic learning of medical diag-
nostic rules (Technical report). Jozef Stefan Institute, Ljubljana, Yugoslavia.

Lopez de Mantaras, R. (1991). A distance-based attribute selection measure for decision tree induc-
tion. Machine Learning, 6(1), 81-92.

Malerba, D., Floriana, E., & Semeraro, G. (1995). A further comparison of simplification methods for
decision tree. induction. In D. Fisher & H. Lenz (Eds.), Learningfrom data: AI and statistics.
Springer-Verlag.

Mehta, M., Rissanen, J., & Agrawal, R. (1995). MDL-based decision tree pruning. Proceedings of
the First International Conference on Knowledge Discovery and Data Mining (pp. 216-221).
Menlo Park, CA: AAAI Press.

Mingers, J. (1989a). An empirical comparison of selection measures for decision-tree induction.
Machine Learning, 3(4), 319-342.

Mingers, J. (1989b). An empirical comparison of pruning methods for decision-tree induction.
Machine Learning, 4(2), 227-243.

Murphy, P. M., & Pazzani, M. J. (1994). Exploring the decision forest: An empirical investigation
of Occam's razor in decision tree induction. Journal of Artijicial Intelligence Research, 1,
257-275.

Murthy, S. K., Kasif, S., & Salzberg, S. (1994). A system for induction of oblique decision trees.
Journal of Art$cial Intelligence Research, 2, 1-33.

Nunez, M. (1991). The use of background knowledge in decision tree induction. Machine Learning,
6(3), 23 1-250.

Pagallo, G., & Haussler, D. (1990). Boolean feature discovery in empirical learning. Machine Learn-
ing, 5, 71-100.

Qulnlan, J. R. (1979). Discovering rules by induction from large collections of examples. In D.
Michie (Ed.), Expert systems in the micro electronic age. Edinburgh Univ. Press.

Qulnlan, J. R. (1983). Learning efficient classification procedures and their application to chess end
games. In R. S. Michalski, J. G. Carbonell, & T. M. Mitchell (Eds.), Machine learning: An
artificial intelligence approach. San Matw, CA: Morgan Kaufmann.

Qulnlan, J. R. (1986). Induction of decision trees. Machine Learning, 1(1), 81-106.
Qulnlan, J. R. (1987). Rule induction with statistical data-a comparison with multiple regression.

Journal of the Operational Research Society, 38,347-352.
Quinlan, J.R. (1988). An empirical comparison of genetic and decision-tree classifiers. Proceedings

of the Fifrh International Machine Learning Conference (135-141). San Matw, CA: Morgan
Kaufmann.

Quinlan, J.R. (1988b). Decision trees and multi-valued attributes. In Hayes, Michie, & Richards
(Eds.), Machine Intelligence 1 1 , (pp. 305-318). Oxford, England: Oxford University Press.

80 MACHINE LEARNING

Quinlan, J. R., & Rivest, R. (1989). Information and Computation, (go), 227-248.
Quinlan, J. R. (1993). C4.5: Programs for Machine Learning. San Mateo, CA: Morgan Kaufmann.
Rissanen, J. (1983). A universal prior for integers and estimation by minimum description length.

Annals of Statistics 11 (2), 416-431.
Rivest, R. L. (1987). Learning decision lists. Machine Learning, 2(3), 229-246.
Schaffer, C. (1993). Overfitting avoidance as bias. Machine Learning, 10, 113-152.
Shavlik, J. W., Mooney, R. J., & Towell, G. G. (1991). Symbolic and neural learning algorithms: an

experimental comparison. Machine kaming , 6(2), 11 1-144.
Tan, M. (1993). Cost-sensitive learning of classification knowledge and its applications in robotics.

Machine Learning, 13(1), 1-33.
Tan, M., & Schlimmer, J. C. (1990). Two case studies in cost-sensitive concept acquisition. Pro-

ceedings of the AAAZ-90.
Thrun, S. B. et al. (1991). The Monk's problems: A pe~ormance comparison of different learn-

ing algorithms, (Technical report CMU-FS-91-197). Computer Science Department, Carnegie
Mellon Univ., Pittsburgh, PA.

Turney, P. D. (1995). Cost-sensitive classification: empirical evaluation of a hybrid genetic decision
tree induction algorithm. Journal of A1 Research, 2, 369409.

Utgoff, P. E. (1989). Incremental induction of decision trees. Machine Learning, 4(2), 161-186.
Utgoff, P. E., & Brodley, C. E. (1991). Linear machine decision trees, (COINS Technical Report

91-10). University of Massachusetts, Amherst, MA.
Weiss, S., & Kapouleas, I. (1989). An empirical comparison of pattern recognition, neural nets,

and machine learning classification methods. Proceedings of the Eleventh IJCAI, (781-787),
Morgan Kaufmann.

CHAPTER

ARTIFICIAL
NEURAL

NETWORKS

Artificial neural networks (ANNs) provide a general, practical method for learning
real-valued, discrete-valued, and vector-valued functions from examples. Algorithms
such as BACKPROPAGATION use gradient descent to tune network parameters to best
fit a training set of input-output pairs. ANN learning is robust to errors in the training
data and has been successfully applied to problems such as interpreting visual scenes,
speech recognition, and learning robot control strategies.

4.1 INTRODUCTION
Neural network learning methods provide a robust approach to approximating
real-valued, discrete-valued, and vector-valued target functions. For certain types
of problems, such as learning to interpret complex real-world sensor data, artificial
neural networks are among the most effective learning methods currently known.
For example, the BACKPROPAGATION algorithm described in this chapter has proven
surprisingly successful in many practical problems such as learning to recognize
handwritten characters (LeCun et al. 1989), learning to recognize spoken words
(Lang et al. 1990), and learning to recognize faces (Cottrell 1990). One survey of
practical applications is provided by Rumelhart et al. (1994).

4.1.1 Biological Motivation
The study of artificial neural networks (ANNs) has been inspired in part by the
observation that biological learning systems are built of very complex webs of
interconnected neurons. In rough analogy, artificial neural networks are built out
of a densely interconnected set of simple units, where each unit takes a number
of real-valued inputs (possibly the outputs of other units) and produces a single
real-valued output (which may become the input to many other units).

To develop a feel for this analogy, let us consider a few facts from neuro-
biology. The human brain, for example, is estimated to contain a densely inter-
connected network of approximately 1011 neurons, each connected, on average, to
lo4 others. Neuron activity is typically excited or inhibited through connections to
other neurons. The fastest neuron switching times are known to be on the order of
loe3 seconds--quite slow compared to computer switching speeds of 10-lo sec-
onds. Yet humans are able to make surprisingly complex decisions, surprisingly
quickly. For example, it requires approximately lo-' seconds to visually recognize
your mother. Notice the sequence of neuron firings that can take place during this
10-'-second interval cannot possibly be longer than a few hundred steps, given
the switching speed of single neurons. This observation has led many to speculate
that the information-processing abilities of biological neural systems must follow
from highly parallel processes operating on representations that are distributed
over many neurons. One motivation for ANN systems is to capture this kind
of highly parallel computation based on distributed representations. Most ANN
software runs on sequential machines emulating distributed processes, although
faster versions of the algorithms have also been implemented on highly parallel
machines and on specialized hardware designed specifically for ANN applications.

While ANNs are loosely motivated by biological neural systems, there are
many complexities to biological neural systems that are not modeled by ANNs,
and many features of the ANNs we discuss here are known to be inconsistent
with biological systems. For example, we consider here ANNs whose individual
units output a single constant value, whereas biological neurons output a complex
time series of spikes.

Historically, two groups of researchers have worked with artificial neural
networks. One group has been motivated by the goal of using ANNs to study
and model biological learning processes. A second group has been motivated by
the goal of obtaining highly effective machine learning algorithms, independent of
whether these algorithms mirror biological processes. Within this book our interest
fits the latter group, and therefore we will not dwell further on biological modeling.
For more information on attempts to model biological systems using ANNs, see,
for example, Churchland and Sejnowski (1992); Zornetzer et al. (1994); Gabriel
and Moore (1990).

4.2 NEURAL NETWORK REPRESENTATIONS
A prototypical example of ANN learning is provided by Pomerleau's (1993) sys-
tem ALVINN, which uses a learned ANN to steer an autonomous vehicle driving

at normal speeds on public highways. The input to the neural network is a 30 x 32
grid of pixel intensities obtained from a forward-pointed camera mounted on the
vehicle. The network output is the direction in which the vehicle is steered. The
ANN is trained to mimic the observed steering commands of a human driving the
vehicle for approximately 5 minutes. ALVINN has used its learned networks to
successfully drive at speeds up to 70 miles per hour and for distances of 90 miles
on public highways (driving in the left lane of a divided public highway, with
other vehicles present).

Figure 4.1 illustrates the neural network representation used in one version
of the ALVINN system, and illustrates the kind of representation typical of many
ANN systems. The network is shown on the left side of the figure, with the input
camera image depicted below it. Each node (i.e., circle) in the network diagram
corresponds to the output of a single network unit, and the lines entering the node
from below are its inputs. As can be seen, there are four units that receive inputs
directly from all of the 30 x 32 pixels in the image. These are called "hidden"
units because their output is available only within the network and is not available
as part of the global network output. Each of these four hidden units computes a
single real-valued output based on a weighted combination of its 960 inputs. These
hidden unit outputs are then used as inputs to a second layer of 30 "output" units.
Each output unit corresponds to a particular steering direction, and the output
values of these units determine which steering direction is recommended most
strongly.

The diagrams on the right side of the figure depict the learned weight values
associated with one of the four hidden units in this ANN. The large matrix of
black and white boxes on the lower right depicts the weights from the 30 x 32 pixel
inputs into the hidden unit. Here, a white box indicates a positive weight, a black
box a negative weight, and the size of the box indicates the weight magnitude.
The smaller rectangular diagram directly above the large matrix shows the weights
from this hidden unit to each of the 30 output units.

The network structure of ALYINN is typical of many ANNs. Here the in-
dividual units are interconnected in layers that form a directed acyclic graph. In
general, ANNs can be graphs with many types of structures-acyclic or cyclic,
directed or undirected. This chapter will focus on the most common and practical
ANN approaches, which are based on the BACKPROPAGATION algorithm. The BACK-
PROPAGATION algorithm assumes the network is a fixed structure that corresponds
to a directed graph, possibly containing cycles. Learning corresponds to choosing
a weight value for each edge in the graph. Although certain types of cycles are
allowed, the vast majority of practical applications involve acyclic feed-forward
networks, similar to the network structure used by ALVINN.

4.3 APPROPRIATE PROBLEMS FOR NEURAL NETWORK
LEARNING
ANN learning is well-suited to problems in which the training data corresponds
to noisy, complex sensor data, such as inputs from cameras and microphones.

E2' Straight
Ahead

1 1 1
30 Output

Units

n

30x32 Sensor
Input Retina

1

FIGURE 4.1
Neural network learning to steer an autonomous vehicle. The ALVINN system uses BACKPROPAGA-
TION to learn to steer an autonomous vehicle (photo at top) driving at speeds up to 70 miles per hour.
The diagram on the left shows how the image of a forward-mounted camera is mapped to 960 neural
network inputs, which are fed forward to 4 hidden units, connected to 30 output units. Network
outputs encode the commanded steering direction. The figure on the right shows weight values for
one of the hidden units in this network. The 30 x 32 weights into the hidden unit are displayed in
the large matrix, with white blocks indicating positive and black indicating negative weights. The
weights from this hidden unit to the 30 output units are depicted by the smaller rectangular block
directly above the large block. As can be seen from these output weights, activation of this particular
hidden unit encourages a turn toward the left.

~t is also applicable to problems for which more symbolic representations are
often used, such as the decision tree learning tasks discussed in Chapter 3. In
these cases ANN and decision tree learning often produce results of comparable
accuracy. See Shavlik et al. (1991) and Weiss and Kapouleas (1989) for exper-
imental comparisons of decision tree and ANN learning. The BACKPROPAGATION
algorithm is the most commonly used ANN learning technique. It is appropriate
for problems with the following characteristics:

0 Instances are represented by many attribute-value pairs. The target function
to be learned is defined over instances that can be described by a vector of
predefined features, such as the pixel values in the ALVINN example. These
input attributes may be highly correlated or independent of one another.
Input values can be any real values.
The target function output may be discrete-valued, real-valued, or a vector
of several real- or discrete-valued attributes. For example, in the ALVINN
system the output is a vector of 30 attributes, each corresponding to a rec-
ommendation regarding the steering direction. The value of each output is
some real number between 0 and 1, which in this case corresponds to the
confidence in predicting the corresponding steering direction. We can also
train a single network to output both the steering command and suggested
acceleration, simply by concatenating the vectors that encode these two out-
put predictions.
The training examples may contain errors. ANN learning methods are quite
robust to noise in the training data.
Long training times are acceptable. Network training algorithms typically
require longer training times than, say, decision tree learning algorithms.
Training times can range from a few seconds to many hours, depending
on factors such as the number of weights in the network, the number of
training examples considered, and the settings of various learning algorithm
parameters.
Fast evaluation of the learned target function may be required. Although
ANN learning times are relatively long, evaluating the learned network, in
order to apply it to a subsequent instance, is typically very fast. For example,
ALVINN applies its neural network several times per second to continually
update its steering command as the vehicle drives forward.

I The ability of humans to understand the learned target function is not impor-
tant. The weights learned by neural networks are often difficult for humans to
interpret. Learned neural networks are less easily communicated to humans
than learned rules.

The rest of this chapter is organized as follows: We first consider several
alternative designs for the primitive units that make up artificial neural networks
(perce~trons, linear units, and sigmoid units), along with learning algorithms for
training single units. We then present the BACKPROPAGATION algorithm for training

multilayer networks of such units and consider several general issues such as the
representational capabilities of ANNs, nature of the hypothesis space search, over-
fitting problems, and alternatives to the BACKPROPAGATION algorithm. A detailed
example is also presented applying BACKPROPAGATION to face recognition, and
directions are provided for the reader to obtain the data and code to experiment
further with this application.

4.4 PERCEPTRONS
One type of ANN system is based on a unit called a perceptron, illustrated in
Figure 4.2. A perceptron takes a vector of real-valued inputs, calculates a linear
combination of these inputs, then outputs a 1 if the result is greater than some
threshold and -1 otherwise. More precisely, given inputs xl through x,, the output
o(x1, . . . , x,) computed by the perceptron is

o(x1,. . . , x ,) = 1 if wo + w l x l + ~ 2 x 2 + - . + W , X , > 0
-1 otherwise

where each wi is a real-valued constant, or weight, that determines the contribution
of input xi to the perceptron output. Notice the quantity (-wO) is a threshold that
the weighted combination of inputs wlxl + . . . + wnxn must surpass in order for
the perceptron to output a 1.

To simplify notation, we imagine an additional constant input xo = 1, al-
lowing us to write the above inequality as C:=o wixi > 0, or in vector form as
iir ..i! > 0. For brevity, we will sometimes write the perceptron function as

where

Learning a perceptron involves choosing values for the weights wo, . . . , w,.
Therefore, the space H of candidate hypotheses considered in perceptron learning
is the set of all possible real-valued weight vectors.

4.4.1 Representational Power of Perceptrons
We can view the perceptron as representing a hyperplane decision surface in the
n-dimensional space of instances (i.e., points). The perceptron outputs a 1 for
instances lying on one side of the hyperplane and outputs a -1 for instances
lying on the other side, as illustrated in Figure 4.3. The equation for this decision
hyperplane is iir . .i! = 0. Of course, some sets of positive and negative examples
cannot be separated by any hyperplane. Those that can be separated are called
linearly separable sets of examples.

FIGURE 4 3
A perceptron.

A single perceptron can be used to represent many boolean functions. For
example, if we assume boolean values of 1 (true) and -1 (false), then one way to
use a two-input perceptron to implement the AND function is to set the weights
wo = -3, and wl = wz = .5. This perceptron can be made to represent the OR
function instead by altering the threshold to wo = -.3. In fact, AND and OR can
be viewed as special cases of m-of-n functions: that is, functions where at least
m of the n inputs to the perceptron must be true. The OR function corresponds to
rn = 1 and the AND function to m = n. Any m-of-n function is easily represented
using a perceptron by setting all input weights to the same value (e.g., 0.5) and
then setting the threshold wo accordingly.

Perceptrons can represent all of the primitive boolean functions AND, OR,
NAND (1 AND), and NOR (1 OR). Unfortunately, however, some boolean func-
tions cannot be represented by a single perceptron, such as the XOR function
whose value is 1 if and only if xl # xz. Note the set of linearly nonseparable
training examples shown in Figure 4.3(b) corresponds to this XOR function.

The ability of perceptrons to represent AND, OR, NAND, and NOR is
important because every boolean function can be represented by some network of
interconnected units based on these primitives. In fact, every boolean function can
be represented by some network of perceptrons only two levels deep, in which

FIGURE 4.3
The decision surface represented by a two-input perceptron. (a) A set of training examples and the
decision surface of a perceptron that classifies them correctly. (b) A set of training examples that is
not linearly separable (i.e., that cannot be correctly classified by any straight line). xl and x2 are the
Perceptron inputs. Positive examples are indicated by "+", negative by "-".

the inputs are fed to multiple units, and the outputs of these units are then input to
a second, final stage. One way is to represent the boolean function in disjunctive
normal form (i.e., as the disjunction (OR) of a set of conjunctions (ANDs) of
the inputs and their negations). Note that the input to an AND perceptron can be
negated simply by changing the sign of the corresponding input weight.

Because networks of threshold units can represent a rich variety of functions
and because single units alone cannot, we will generally be interested in learning
multilayer networks of threshold units.

4.4.2 The Perceptron Training Rule
Although we are interested in learning networks of many interconnected units, let
us begin by understanding how to learn the weights for a single perceptron. Here
the precise learning problem is to determine a weight vector that causes the per-
ceptron to produce the correct f 1 output for each of the given training examples.

Several algorithms are known to solve this learning problem. Here we con-
sider two: the perceptron rule and the delta rule (a variant of the LMS rule used
in Chapter 1 for learning evaluation functions). These two algorithms are guaran-
teed to converge to somewhat different acceptable hypotheses, under somewhat
different conditions. They are important to ANNs because they provide the basis
for learning networks of many units.

One way to learn an acceptable weight vector is to begin with random
weights, then iteratively apply the perceptron to each training example, modify-
ing the perceptron weights whenever it misclassifies an example. This process is
repeated, iterating through the training examples as many times as needed until
the perceptron classifies all training examples correctly. Weights are modified at
each step according to the perceptron training rule, which revises the weight wi
associated with input xi according to the rule

where

Here t is the target output for the current training example, o is the output generated
by the perceptron, and q is a positive constant called the learning rate. The role
of the learning rate is to moderate the degree to which weights are changed at
each step. It is usually set to some small value (e.g., 0.1) and is sometimes made
to decay as the number of weight-tuning iterations increases.

Why should this update rule converge toward successful weight values? To
get an intuitive feel, consider some specific cases. Suppose the training example is
correctly classified already by the perceptron. In this case, (t - o) is zero, making
Awi zero, so that no weights are updated. Suppose the perceptron outputs a -1,
when the target output is + 1. To make the perceptron output a + 1 instead of - 1 in
this case, the weights must be altered to increase the value of G . 2 . For example, if
xi r 0, then increasing wi will bring the perceptron closer to correctly classifying

this example. Notice the training rule will increase w, in this case, because (t - o),
7 , and Xi are all positive. For example, if xi = .8, q = 0.1, t = 1 , and o = - 1 ,
then the weight update will be Awi = q(t - o)xi = O . 1 (1 - (-1))0.8 = 0.16. On
the other hand, if t = - 1 and o = 1, then weights associated with positive xi will
be decreased rather than increased.

In fact, the above learning procedure can be proven to converge within a
finite number of applications of the perceptron training rule to a weight vec-
tor that correctly classifies all training examples, provided the training examples
are linearly separable and provided a sufficiently small 7 is used (see Minsky
and Papert 1969). If the data are not linearly separable, convergence is not as-
sured.

4.4.3 Gradient Descent and the Delta Rule
Although the perceptron rule finds a successful weight vector when the training
examples are linearly separable, it can fail to converge if the examples are not
linearly separable. A second training rule, called the delta rule, is designed to
overcome this difficulty. If the training examples are not linearly separable, the
delta rule converges toward a best-fit approximation to the target concept.

The key idea behind the delta rule is to use gradient descent to search the hy-
pothesis space of possible weight vectors to find the weights that best fit the train-
ing examples. This rule is important because gradient descent provides the basis
for the BACKPROPAGATION algorithm, which can learn networks with many inter-
connected units. It is also important because gradient descent can serve as the
basis for learning algorithms that must search through hypothesis spaces contain-
ing many different types of continuously parameterized hypotheses.

The delta training rule is best understood by considering the task of training
an unthresholded perceptron; that is, a linear unit for which the output o is given by

Thus, a linear unit corresponds to the first stage of a perceptron, without the
threshold.

In order to derive a weight learning rule for linear units, let us begin by
specifying a measure for the training error of a hypothesis (weight vector), relative
to the training examples. Although there are many ways to define this error, one
common measure that will turn out to be especially convenient is

where D is the set of training examples, td is the target output for training example
d, and od is the output of the linear unit for training example d. By this definition,
E (6) is simply half the squared difference between the target output td and the
h e a r unit output od, summed over all training examples. Here we characterize
E as a function of 27, because the linear unit output o depends on this weight
vector. Of course E also depends on the particular set of training examples, but

we assume these are fixed during training, so we do not bother to write E as an
explicit function of these. Chapter 6 provides a Bayesian justification for choosing
this particular definition of E. In particular, there we show that under certain
conditions the hypothesis that minimizes E is also the most probable hypothesis
in H given the training data.

4.4.3.1 VISUALIZING THE HYPOTHESIS SPACE

To understand the gradient descent algorithm, it is helpful to visualize the entire
hypothesis space of possible weight vectors and their associated E values, as
illustrated in Figure 4.4. Here the axes wo and w l represent possible values for
the two weights of a simple linear unit. The wo, w l plane therefore represents
the entire hypothesis space. The vertical axis indicates the error E relative to
some fixed set of training examples. The error surface shown in the figure thus
summarizes the desirability of every weight vector in the hypothesis space (we
desire a hypothesis with minimum error). Given the way in which we chose to
define E, for linear units this error surface must always be parabolic with a single
global minimum. The specific parabola will depend, of course, on the particular
set of training examples.

FIGURE 4.4
Error of different hypotheses. For a linear unit with two weights, the hypothesis space H is the
wg, wl plane. The vertical axis indicates tk error of the corresponding weight vector hypothesis,
relative to a fixed set of training examples. The arrow shows the negated gradient at one partic-
ular point, indicating the direction in the wo, w l plane producing steepest descent along the error
surface.

Gradient descent search determines a weight vector that minimizes E by
starting with an arbitrary initial weight vector, then repeatedly modifying it in
small steps. At each step, the weight vector is altered in the direction that produces
the steepest descent along the error surface depicted in Figure 4.4. This process
continues until the global minimum error is reached.

4.4.3.2 DERIVATION OF THE GRADIENT DESCENT RULE

How can we calculate the direction of steepest descent along the error surface?
This direction can be found by computing the derivative of E with respect to each
component of the vector 2. This vector derivative is called the gradient of E with
respect to 221, written ~ ~ (i i r) .

Notice VE(221) is itself a vector, whose components are the partial derivatives
of E with respect to each of the wi. When interpreted as a vector in weight
space, the gradient specijies the direction that produces the steepest increase in
E . The negative of this vector therefore gives the direction of steepest decrease.
For example, the arrow in Figure 4.4 shows the negated gradient -VE(G) for a
particular point in the wo, wl plane.

Since the gradient specifies the direction of steepest increase of E, the train-
ing rule for gradient descent is

where

Here r] is a positive constant called the learning rate, which determines the step
size in the gradient descent search. The negative sign is present because we want
to move the weight vector in the direction that decreases E. This training rule
can also be written in its component form

where

which makes it clear that steepest descent is achieved by altering each component
w, of ii in proportion to E.

To construct a practical algorithm for iteratively updating weights according
to Equation (4 4 , we need an efficient way of calculating the gradient at each
step. Fortunately, this is not difficult. The vector of derivatives that form the

gradient can be obtained by differentiating E from Equation (4.2), as

where xid denotes the single input component xi for training example d. We now
have an equation that gives in terms of the linear unit inputs xid, outputs
Od, and target values td associated with the training examples. Substituting Equa-
tion (4.6) into Equation (4.5) yields the weight update rule for gradient descent

To summarize, the gradient descent algorithm for training linear units is as
follows: Pick an initial random weight vector. Apply the linear unit to all training
examples, then compute Awi for each weight according to Equation (4.7). Update
each weight wi by adding Awi, then repeat this process. This algorithm is given
in Table 4.1. Because the error surface contains only a single global minimum,
this algorithm will converge to a weight vector with minimum error, regardless
of whether the training examples are linearly separable, given a sufficiently small
learning rate q is used. If r) is too large, the gradient descent search runs the risk
of overstepping the minimum in the error surface rather than settling into it. For
this reason, one common modification to the algorithm is to gradually reduce the
value of r) as the number of gradient descent steps grows.

4.4.3.3 STOCHASTIC APPROXIMATION TO GRADIENT DESCENT

Gradient descent is an important general paradigm for learning. It is a strategy for
searching through a large or infinite hypothesis space that can be applied whenever
(1) the hypothesis space contains continuously parameterized hypotheses (e.g., the
weights in a linear unit), and (2) the error can be differentiated with respect to
these hypothesis parameters. The key practical difficulties in applying gradient
descent are (1) converging to a local minimum can sometimes be quite slow (i.e.,
it can require many thousands of gradient descent steps), and (2) if there are
multiple local minima in the error surface, then there is no guarantee that the
procedure will find the global minimum.

CHAF'l'ER 4 ARTIFICIAL NEURAL NETWORKS 93
- -

~ ~ A D I E N T - D E s c E N T (~ ~ ~ ~ ~ ~ ~ ~ ~ x ~ ~ ~ ~ ~ s , q)
Each training example is a pair of the form (2, t) , where x' is the vector of input values, and
t is the target output value. q is the learning rate (e.g., .05). . Initialize each w, to some small random value . Until the termination condition is met, Do

0 Initialize each Awi to zero.
0 For each (2, t) in trainingaxamples, Do

w Input the instance x' to the unit and compute the output o
For each linear unit weight w, , Do

For each linear unit weight wi, Do

TABLE 4.1
GRADIENT DESCENT algorithm for training a linear unit. To implement the stochastic approximation
to gradient descent, Equation (T4.2) is deleted, and Equation (T4.1) replaced by wi c wi +q(t - o b i .

One common variation on gradient descent intended to alleviate these diffi-
culties is called incremental gradient descent, or alternatively stochastic gradient
descent. Whereas the gradient descent training rule presented in Equation (4.7)
computes weight updates after summing over a22 the training examples in D, the
idea behind stochastic gradient descent is to approximate this gradient descent
search by updating weights incrementally, following the calculation of the error
for each individual example. The modified training rule is like the training rule
given by Equation (4.7) except that as we iterate through each training example
we update the weight according to

where t, o, and xi are the target value, unit output, and ith input for the training
example in question. To modify the gradient descent algorithm of Table 4.1 to
implement this stochastic approximation, Equation (T4.2) is simply deleted and
Equation (T4.1) replaced by wi t wi + v (t - o) xi. One way to view this stochastic
gradient descent is to consider a distinct error function ~ ~ (6) defined for each
individual training example d as follows

1
Ed (6) = - (td - 0 d) 2

2
(4.11)

where t, and od are the target value and the unit output value for training ex-
ample d. Stochastic gradient descent iterates over the training examples d in D,
at each iteration altering the weights according to the gradient with respect to
Ed(;). The sequence of these weight updates, when iterated over all training
examples, provides a reasonable approximation to descending the gradient with
respect to our original error function E(G). By making the value of 7 (the gradient

94 MACHINE LEARNING

descent step size) sufficiently small, stochastic gradient descent can be made to
approximate true gradient descent arbitrarily closely. The key differences between
standard gradient descent and stochastic gradient descent are:

0 In standard gradient descent, the error is summed over all examples before
updating weights, whereas in stochastic gradient descent weights are updated
upon examining each training example. . Summing over multiple examples in standard gradient descent requires more
computation per weight update step. On the other hand, because it uses the
true gradient, standard gradient descent is often used with a larger step size
per weight update than stochastic gradient descent.

r, In cases where there are multiple local minima with respect to E($, stochas-
tic gradient descent can sometimes avoid falling into these local minima
because it uses the various V E d (G) rather than V E (6) to guide its search.

Both stochastic and standard gradient descent methods are commonly used in
practice.

The training rule in Equation (4.10) is known as the delta rule, or sometimes
the LMS (least-mean-square) rule, Adaline rule, or Widrow-Hoff rule (after its
inventors). In Chapter 1 we referred to it as the LMS weight-update rule when
describing its use for learning an evaluation function for game playing. Notice
the delta rule in Equation (4.10) is similar to the perceptron training rule in
Equation (4.4.2). In fact, the two expressions appear to be identical. However,
the rules are different because in the delta rule o refers to the linear unit output
o (2) = i;) .?, whereas for the perceptron rule o refers to the thresholded output
o(2) = sgn($. 2) .

Although we have presented the delta rule as a method for learning weights
for unthresholded linear units, it can easily be used to train thresholded perceptron
units, as well. Suppose that o = i;) . x' is the unthresholded linear unit output as
above, and of = s g n (G . 2) is the result of thresholding o as in the perceptron. Now
if we wish to train a perceptron to fit training examples with target values o f f 1 for
o', we can use these same target values and examples to train o instead, using the
delta rule. Clearly, if the unthresholded output o can be trained to fit these values
perfectly, then the threshold output of will fit them as well (because sgn(1) = 1,
and sgn(-1) = -1). Even when the target values cannot be fit perfectly, the
thresholded of value will correctly fit the f 1 target value whenever the linear
unit output o has the correct sign. Notice, however, that while this procedure will
learn weights that minimize the error in the linear unit output o, these weights
will not necessarily minimize the number of training examples misclassified by
the thresholded output 0'.

4.4.4 Remarks
We have considered two similar algorithms for iteratively learning perceptron
weights. The key difference between these algorithms is that the perceptron train-

C H m R 4 ARTIFICIAL NEURAL NETWORKS 95

ing rule updates weights based on the error in the thresholded perceptron output,
whereas the delta rule updates weights based on the error in the unthresholded
linear combination of inputs.

The difference between these two training rules is reflected in different con-
vergence properties. The perceptron training rule converges after a finite number
of iterations to a hypothesis that perfectly classifies the training data, provided the
training examples are linearly separable. The delta rule converges only asymp-
totically toward the minimum error hypothesis, possibly requiring unbounded
time, but converges regardless of whether the training data are linearly sepa-
rable. A detailed presentation of the convergence proofs can be found in Hertz et
al. (1991).

A third possible algorithm for learning the weight vector is linear program-
ming. Linear programming is a general, efficient method for solving sets of linear
inequalities. Notice each training example corresponds to an inequality of the
form zZI - x' > 0 or G . x' 5 0, and their solution is the desired weight vector. Un-
fortunately, this approach yields a solution only when the training examples are
linearly separable; however, Duda and Hart (1973, p. 168) suggest a more subtle
formulation that accommodates the nonseparable case. In any case, the approach
of linear programming does not scale to training multilayer networks, which is
our primary concern. In contrast, the gradient descent approach, on which the
delta rule is based, can be easily extended to multilayer networks, as shown in
the following section.

4.5 MULTILAYER NETWORKS AND THE BACKPROPAGATION
ALGORITHM
As noted in Section 4.4.1, single perceptrons can only express linear decision
surfaces. In contrast, the kind of multilayer networks learned by the BACKPROPA-
CATION algorithm are capable of expressing a rich variety of nonlinear decision
surfaces. For example, a typical multilayer network and decision surface is de-
picted in Figure 4.5. Here the speech recognition task involves distinguishing
among 10 possible vowels, all spoken in the context of "h-d" (i.e., "hid," "had,"
"head," "hood," etc.). The input speech signal is represented by two numerical
parameters obtained from a spectral analysis of the sound, allowing us to easily
visualize the decision surface over the two-dimensional instance space. As shown
in the figure, it is possible for the multilayer network to represent highly nonlinear
decision surfaces that are much more expressive than the linear decision surfaces
of single units shown earlier in Figure 4.3.

This section discusses how to learn such multilayer networks using a gradient
descent algorithm similar to that discussed in the previous section.

4.5.1 A Differentiable Threshold Unit
What type of unit shall we use as the basis for constructing multilayer networks?
At first we might be tempted to choose the linear units discussed in the previous

head hid 4 who'd hood

0 b a d . hid
+ hod
r had
r hawed . hoard
o heed
c hud , who'd
hood

FIGURE 4.5
Decision regions of a multilayer feedforward network. The network shown here was trained to
recognize 1 of 10 vowel sounds occurring in the context "hd" (e.g., "had," "hid"). The network
input consists of two parameters, F1 and F2, obtained from a spectral analysis of the sound. The
10 network outputs correspond to the 10 possible vowel sounds. The network prediction is the
output whose value is highest. The plot on the right illustrates the highly nonlinear decision surface
represented by the learned network. Points shown on the plot are test examples distinct from the
examples used to train the network. (Reprinted by permission from Haung and Lippmann (1988).)

section, for which we have already derived a gradient descent learning rule. How-
ever, multiple layers of cascaded linear units still produce only linear functions,
and we prefer networks capable of representing highly nonlinear functions. The
perceptron unit is another possible choice, but its discontinuous threshold makes
it undifferentiable and hence unsuitable for gradient descent. What we need is a
unit whose output is a nonlinear function of its inputs, but whose output is also
a differentiable function of its inputs. One solution is the sigmoid unit-a unit
very much like a perceptron, but based on a smoothed, differentiable threshold
function.

The sigmoid unit is illustrated in Figure 4.6. Like the perceptron, the sigmoid
unit first computes a linear combination of its inputs, then applies a threshold to
the result. In the case of the sigmoid unit, however, the threshold output is a

net = C wi xi 1 o = @net) = -
1 + kMf

FIGURE 4.6
The sigmoid threshold unit.

CHAPTER 4 ARTIFICIAL NEURAL NETWORKS 97

continuous function of its input. More precisely, the sigmoid unit computes its
output o as

where

a is often called the sigmoid function or, alternatively, the logistic function. Note
its output ranges between 0 and 1, increasing monotonically with its input (see the
threshold function plot in Figure 4.6.). Because it maps a very large input domain
to a small range of outputs, it is often referred to as the squashingfunction of
the unit. The sigmoid function has the useful property that its derivative is easily
expressed in terms of its output [in particular, =

d y O(Y) . (1 - dy))] . As
we shall see, the gradient descent learning rule makes use of this derivative.
Other differentiable functions with easily calculated derivatives are sometimes
used in place of a. For example, the term e-y in the sigmoid function definition
is sometimes replaced by e-k'y where k is some positive constant that determines
the steepness of the threshold. The function tanh is also sometimes used in place
of the sigmoid function (see Exercise 4.8).

4.5.2 The BACKPROPAGATION Algorithm
The BACKPROPAGATION algorithm learns the weights for a multilayer network,
given a network with a fixed set of units and interconnections. It employs gradi-
ent descent to attempt to minimize the squared error between the network output
values and the target values for these outputs. This section presents the BACKPROP-
AGATION algorithm, and the following section gives the derivation for the gradient
descent weight update rule used by BACKPROPAGATION.

Because we are considering networks with multiple output units rather than
single units as before, we begin by redefining E to sum the errors over all of the
network output units

where outputs is the set of output units in the network, and tkd and OM are the
I target and output values associated with the kth output unit and training example d.

The learning problem faced by BACKPROPAGATION is to search a large hypoth-
esis space defined by all possible weight values for all the units in the network.
The situation can be visualized in terms of an error surface similar to that shown
for linear units in Figure 4.4. The error in that diagram is replaced by our new
definition of E, and the other dimensions of the space correspond now to all of
the weights associated with all of the units in the network. As in the case of
training a single unit, gradient descent can be used to attempt to find a hypothesis
to minimize E.

B~c~~~o~~GATIO~(trainingaxamp~es, q, ni, , no,, , nhidden)
Each training example is a pair of the form (2, i), where x' is the vector of network input
values, and is the vector of target network output values.
q is the learning rate (e.g., .O5). ni, is the number of network inputs, nhidden the number of
units in the hidden layer, and no,, the number of output units.
The inputfiom unit i into unit j is denoted xji, and the weight from unit i to unit j is denoted
wji.

a Create a feed-forward network with ni, inputs, m i d d e n hidden units, and nour output units.
a Initialize all network weights to small random numbers (e.g., between -.05 and .05).
r Until the termination condition is met, Do

a For each (2, i) in trainingaxamples, Do

Propagate the input forward through the network:
1, Input the instance x' to the network and compute the output o, of every unit u in

the network.
Propagate the errors backward through the network:
2. For each network output unit k, calculate its error term Sk

6k 4- ok(l - ok)(tk - 0 k)

3. For each hidden unit h, calculate its error term 6h

4. Update each network weight wji

where
Aw.. -

Jl - I 11

TABLE 4.2
The stochastic gradient descent version of the BACKPROPAGATION algorithm for feedforward networks
containing two layers of sigmoid units.

One major difference in the case of multilayer networks is that the error sur-
face can have multiple local minima, in contrast to the single-minimum parabolic
error surface shown in Figure 4.4. Unfortunately, this means that gradient descent
is guaranteed only to converge toward some local minimum, and not necessarily
the global minimum error. Despite this obstacle, in practice BACKPROPAGATION has
been found to produce excellent results in many real-world applications.

The BACKPROPAGATION algorithm is presented in Table 4.2. The algorithm as
described here applies to layered feedforward networks containing two layers of
sigmoid units, with units at each layer connected to all units from the preceding
layer. This is the incremental, or stochastic, gradient descent version of BACK-
PROPAGATION. The notation used here is the same as that used in earlier sections,
with the following extensions:

CHAPTER 4 ARTIFICIAL NEURAL NETWORKS 99

An index (e.g., an integer) is assigned to each node in the network,where
a "node" is either an input to the network or the output of some unit in the
network.

0 xji denotes the input from node i to unit j , and wji denotes the corresponding
weight.

0 6, denotes the error term associated with unit n. It plays a role analogous
to the quantity (t - o) in our earlier discussion of the delta training rule. As
we shall see later, 6, = - s.
Notice the algorithm in Table 4.2 begins by constructing a network with the

desired number of hidden and output units and initializing all network weights
to small random values. Given this fixed network structure, the main loop of the
algorithm then repeatedly iterates over the training examples. For each training
example, it applies the network to the example, calculates the error of the network
output for this example, computes the gradient with respect to the error on this
example, then updates all weights in the network. This gradient descent step is
iterated (often thousands of times, using the same training examples multiple
times) until the network performs acceptably well.

The gradient descent weight-update rule (Equation [T4.5] in Table 4.2) is
similar to the delta training rule (Equation [4.10]). Like the delta rule, it updates
each weight in proportion to the learning rate r] , the input value xji to which
the weight is applied, and the error in the output of the unit. The only differ-
ence is that the error (t - o) in the delta rule is replaced by a more complex
error term, aj. The exact form of aj follows from the derivation of the weight-
tuning rule given in Section 4.5.3. To understand it intuitively, first consider
how ak is computed for each network output unit k (Equation [T4.3] in the al-
gorithm). ak is simply the familiar (tk - ok) from the delta rule, multiplied by
the factor ok(l - ok), which is the derivative of the sigmoid squashing function.
The ah value for each hidden unit h has a similar form (Equation [T4.4] in the
algorithm). However, since training examples provide target values tk only for
network outputs, no target values are directly available to indicate the error of
hidden units' values. Instead, the error term for hidden unit h is calculated by
summing the error terms J k for each output unit influenced by h, weighting each
of the ak's by wkh, the weight from hidden unit h to output unit k. This weight
characterizes the degree to which hidden unit h is "responsible for" the error in
output unit k.

I The algorithm in Table 4.2 updates weights incrementally, following the
I Presentation of each training example. This corresponds to a stochastic approxi-

mation to gradient descent. To obtain the true gradient of E one would sum the
6, x,, values over all training examples before altering weight values.

The weight-update loop in BACKPROPAGATION may be iterated thousands of
times in a typical application. A variety of termination conditions can be used
to halt the procedure. One may choose to halt after a fixed number of iterations
through the loop, or once the error on the training examples falls below some
threshold, or once the error on a separate validation set of examples meets some

100 MACHINE LEARNING

criterion. The choice of termination criterion is an important one, because too few
iterations can fail to reduce error sufficiently, and too many can lead to overfitting
the training data. This issue is discussed in greater detail in Section 4.6.5.

4.5.2.1 ADDING MOMENTUM

Because BACKPROPAGATION is such a widely used algorithm, many variations have
been developed. Perhaps the most common is to alter the weight-update rule in
Equation (T4.5) in the algorithm by making the weight update on the nth iteration
depend partially on the update that occurred during the (n - 1)th iteration, as
follows:

Here Awji(n) is the weight update performed during the nth iteration through the
main loop of the algorithm, and 0 5 a < 1 is a constant called the momentum.
Notice the first term on the right of this equation is just the weight-update rule of
Equation (T4.5) in the BACKPROPAGATION algorithm. The second term on the right
is new and is called the momentum term. To see the effect of this momentum
term, consider that the gradient descent search trajectory is analogous to that
of a (momentumless) ball rolling down the error surface. The effect of a! is to
add momentum that tends to keep the ball rolling in the same direction from
one iteration to the next. This can sometimes have the effect of keeping the ball
rolling through small local minima in the error surface, or along flat regions in
the surface where the ball would stop if there were no momentum. It also has
the effect of gradually increasing the step size of the search in regions where the
gradient is unchanging, thereby speeding convergence.

4.5.2.2 LEARNING IN ARBITRARY ACYCLIC NETWORKS

The definition of BACKPROPAGATION presented in Table 4.2 applies o h y to two-
layer networks. However, the algorithm given there easily generalizes to feedfor-
ward networks of arbitrary depth. The weight update rule seen in Equation (T4.5)
is retained, and the only change is to the procedure for computing 6 values. In
general, the 6, value for a unit r in layer rn is computed from the 6 values at the
next deeper layer rn + 1 according to

Notice this is identical to Step 3 in the algorithm of Table 4.2, so all we are really
saying here is that this step may be repeated for any number of hidden layers in
the network.

It is equally straightforward to generalize the algorithm to any directed
acyclic graph, regardless of whether the network units are arranged in uniform
layers as we have assumed up to now. In the case that they are not, the rule for
calculating 6 for any internal unit (i.e., any unit that is not an output) is

CHAPTER 4 ARTIFICIAL NEURAL NETWORKS 101

where Downstream(r) is the set of units immediately downstream from unit r in
the network: that is, all units whose inputs include the output of unit r. It is this
gneral form of the weight-update rule that we derive in Section 4.5.3.

4.5.3 Derivation of the BACKPROPAGATION Rule
This section presents the derivation of the BACKPROPAGATION weight-tuning rule.
It may be skipped on a first reading, without loss of continuity.

The specific problem we address here is deriving the stochastic gradient de-
scent rule implemented by the algorithm in Table 4.2. Recall from Equation (4 . l l)
that stochastic gradient descent involves iterating through the training examples
one at a time, for each training example d descending the gradient of the error
Ed with respect to this single example. In other words, for each training example
d every weight wji is updated by adding to it Awji

where Ed is the error on training example d, summed over all output units in the
network

Here outputs is the set of output units in the network, tk is the target value of unit
k for training example d, and ok is the output of unit k given training example d.

The derivation of the stochastic gradient descent rule is conceptually straight-
forward, but requires keeping track of a number of subscripts and variables. We
will follow the notation shown in Figure 4.6, adding a subscript j to denote to
the jth unit of the network as follows:

xji = the ith input to unit j
wji = the weight associated with the ith input to unit j
netj = xi wjixji (the weighted sum of inputs for unit j)
oj = the output computed by unit j
t, = the target output for unit j
a = the sigmoid function
outputs = the set of units in the final layer of the network
Downstream(j) = the set of units whose immediate inputs include the
output of unit j

We now derive an expression for 2 in order to implement the stochastic
gradient descent rule seen in Equation (4:2l) . To begin, notice that weight wji
can influence the rest of the network only through netj. Therefore, we can use the

102 MACHINE LEARNING

chain rule to write

Given Equation (4.22), our remaining task is to derive a convenient expression
for z. We consider two cases in turn: the case where unit j is an output unit
for the network, and the case where j is an internal unit.

Case 1: raini in^ Rule for Output Unit Weights. Just as wji can influence the
rest of the network only through net,, net, can influence the network only through
o j . Therefore, we can invoke the chain rule again to write

To begin, consider just the first term in Equation (4.23)

The derivatives &(tk - ok12 will be zero for all output units k except when k = j.
We therefore drop the summation over output units and simply set k = j.

Next consider the second term in Equation (4.23). Since oj = a(net j) , the
derivative $ is just the derivative of the sigmoid function, which we have
already noted is equal to a(net j) (l - a(net j)) . Therefore,

Substituting expressions (4.24) and (4.25) into (4.23), we obtain

and combining this with Equations (4.21) and (4.22), we have the stochastic
gradient descent rule for output units

Note this training rule is exactly the weight update rule implemented by Equa-
tions (T4.3) and (T4.5) in the algorithm of Table 4.2. Furthermore, we can see
now that Sk in Equation (T4.3) is equal to the quantity -$. In the remainder
of this section we will use Si to denote the quantity -% for an arbitrary unit i .

Case 2: Training Rule for Hidden Unit Weights. In the case where j is an
internal, or hidden unit in the network, the derivation of the training rule for wji
must take into account the indirect ways in which wji can influence the network
outputs and hence Ed. For this reason, we will find it useful to refer to the
set of all units immediately downstream of unit j in the network (i.e., all units
whose direct inputs include the output of unit j). We denote this set of units by
Downstream(j). Notice that netj can influence the network outputs (and therefore
E d) only through the units in Downstream(j). Therefore, we can write

Rearranging terms and using S j to denote -$, we have

and

which is precisely the general rule from Equation (4.20) for updating internal
unit weights in arbitrary acyclic directed graphs. Notice Equation (T4.4) from
Table 4.2 is just a special case of this rule, in which Downstream(j) = outputs.

4.6 REMARKS ON THE BACKPROPAGATION ALGORITHM
4.6.1 Convergence and Local Minima
As shown above, the BACKPROPAGATION algorithm implements a gradient descent
search through the space of possible network weights, iteratively reducing the
error E between the training example target values and the network outputs.
Because the error surface for multilayer networks may contain many different
local minima, gradient descent can become trapped in any of these. As a result,
BACKPROPAGATION over multilayer networks is only guaranteed to converge toward
some local minimum in E and not necessarily to the global minimum error.

Despite the lack of assured convergence to the global minimum error, BACK-
PROPAGATION is a highly effective function approximation method in practice. In
many practical applications the problem of local minima has not been found to
be as severe as one might fear. To develop some intuition here, consider that
networks with large numbers of weights correspond to error surfaces in very high
dimensional spaces (one dimension per weight). When gradient descent falls into
a local minimum with respect to one of these weights, it will not necessarily be
in a local minimum with respect to the other weights. In fact, the more weights in
the network, the more dimensions that might provide "escape routes" for gradient
descent to fall away from the local minimum with respect to this single weight.

A second perspective on local minima can be gained by considering the
manner in which network weights evolve as the number of training iterations
increases. Notice that if network weights are initialized to values near zero, then
during early gradient descent steps the network will represent a very smooth
function that is approximately linear in its inputs. This is because the sigmoid
threshold function itself is approximately linear when the weights are close to
zero (see the plot of the sigmoid function in Figure 4.6). Only after the weights
have had time to grow will they reach a point where they can represent highly
nonlinear network functions. One might expect more local minima to exist in the
region of the weight space that represents these more complex functions. One
hopes that by the time the weights reach this point they have already moved
close enough to the global minimum that even local minima in this region are
acceptable.

Despite the above comments, gradient descent over the complex error sur-
faces represented by ANNs is still poorly understood, and no methods are known to
predict with certainty when local minima will cause difficulties. Common heuris-
tics to attempt to alleviate the problem of local minima include:

Add a momentum term to the weight-update rule as described in Equa-
tion (4.18). Momentum can sometimes carry the gradient descent procedure
through narrow local minima (though in principle it can also carry it through
narrow global minima into other local minima!).
Use stochastic gradient descent rather than true gradient descent. As dis-
cussed in Section 4.4.3.3, the stochastic approximation to gradient descent
effectively descends a different error surface for each training example, re-

CHAPTER 4 ARTIFICIAL NEURAL NETWORKS 105

lying on the average of these to approximate the gradient with respect to the
full training set. These different error surfaces typically will have different
local minima, making it less likely that the process will get stuck in any one
of them.

0 Train multiple networks using the same data, but initializing each network
with different random weights. If the different training efforts lead to dif-
ferent local minima, then the network with the best performance over a
separate validation data set can be selected. Alternatively, all networks can
be retained and treated as a "committee" of networks whose output is the
(possibly weighted) average of the individual network outputs.

4.6.2 Representational Power of Feedforward Networks
What set of functions can be represented by feedfonvard networks? Of course
the answer depends on the width and depth of the networks. Although much is
still unknown about which function classes can be described by which types of
networks, three quite general results are known:

Boolean functions. Every boolean function can be represented exactly by
some network with two layers of units, although the number of hidden units
required grows exponentially in the worst case with the number of network
inputs. To see how this can be done, consider the following general scheme
for representing an arbitrary boolean function: For each possible input vector,
create a distinct hidden unit and set its weights so that it activates if and only
if this specific vector is input to the network. This produces a hidden layer
that will always have exactly one unit active. Now implement the output
unit as an OR gate that activates just for the desired input patterns.

0 Continuous functions. Every bounded continuous function can be approxi-
mated with arbitrarily small error (under a finite norm) by a network with
two layers of units (Cybenko 1989; Hornik et al. 1989). The theorem in
this case applies to networks that use sigmoid units at the hidden layer and
(unthresholded) linear units at the output layer. The number of hidden units
required depends on the function to be approximated.
Arbitraryfunctions. Any function can be approximated to arbitrary accuracy
by a network with three layers of units (Cybenko 1988). Again, the output
layer uses linear units, the two hidden layers use sigmoid units, and the
number of units required at each layer is not known in general. The proof
of this involves showing that any function can be approximated by a lin-
ear combination of many localized functions that have value 0 everywhere
except for some small region, and then showing that two layers of sigmoid
units are sufficient to produce good local approximations.

These results show that limited depth feedfonvard networks provide a very
expressive hypothesis space for BACKPROPAGATION. However, it is important to

keep in mind that the network weight vectors reachable by gradient descent from
the initial weight values may not include all possible weight vectors. Hertz et al.
(1991) provide a more detailed discussion of the above results.

4.6.3 Hypothesis Space Search and Inductive Bias
It is interesting to compare the hypothesis space search of BACKPROPAGATION to
the search performed by other learning algorithms. For BACKPROPAGATION, every
possible assignment of network weights represents a syntactically distinct hy-
pothesis that in principle can be considered by the learner. In other words, the
hypothesis space is the n-dimensional Euclidean space of the n network weights.
Notice this hypothesis space is continuous, in contrast to the hypothesis spaces
of decision tree learning and other methods based on discrete representations.
The fact that it is continuous, together with the fact that E is differentiable with
respect to the continuous parameters of the hypothesis, results in a well-defined
error gradient that provides a very useful structure for organizing the search for
the best hypothesis. This structure is quite different from the general-to-specific
ordering used to organize the search for symbolic concept learning algorithms,
or the simple-to-complex ordering over decision trees used by the ID3 and C4.5
algorithms.

What is the inductive bias by which BACKPROPAGATION generalizes beyond
the observed data? It is difficult to characterize precisely the inductive bias of
BACKPROPAGATION learning, because it depends on the interplay between the gra-
dient descent search and the way in which the weight space spans the space of
representable functions. However, one can roughly characterize it as smooth in-
terpolation between data points. Given two positive training examples with no
negative examples between them, BACKPROPAGATION will tend to label points in
between as positive examples as well. This can be seen, for example, in the de-
cision surface illustrated in Figure 4.5, in which the specific sample of training
examples gives rise to smoothly varying decision regions.

4.6.4 Hidden Layer Representations
One intriguing property of BACKPROPAGATION is its ability to discover useful in-
termediate representations at the hidden unit layers inside the network. Because
training examples constrain only the network inputs and outputs, the weight-tuning
procedure is free to set weights that define whatever hidden unit representation is
most effective at minimizing the squared error E. This can lead BACKPROPAGATION
to define new hidden layer features that are not explicit in the input representa-
tion, but which capture properties of the input instances that are most relevant to
learning the target function.

Consider, for example, the network shown in Figure 4.7. Here, the eight
network inputs are connected to three hidden units, which are in turn connected
to the eight output units. Because of this structure, the three hidden units will
be forced to re-represent the eight input values in some way that captures their

Inputs Outputs Input

10000000
0 1000000
00 100000
00010000
00001000
00000 100
ooOOOo 10
0000000 1

Hidden
Values

.89 .04 .08 +

.15 .99 .99 +

.01 .97 .27 +

.99 .97 .71 +

.03 .05 .02 +

.01 .ll .88 +

.80 .01 .98 +

.60 .94 .01 +

output

10000000
0 1000000
00 100000
000 10000
0000 1000
00000 100
000000 10
0000000 1

FIGURE 4.7
Learned Hidden Layer Representation. This 8 x 3 x 8 network was trained to learn the identity
function, using the eight training examples shown. After 5000 training epochs, the three hidden unit
values encode the eight distinct inputs using the encoding shown on the right. Notice if the encoded
values are rounded to zero or one, the result is the standard binary encoding for eight distinct values.

relevant features, so that this hidden layer representation can be used by the output
units to compute the correct target values.

Consider training the network shown in Figure 4.7 to learn the simple target
function f (2) = 2, where 2 is a vector containing seven 0's and a single 1. The
network must learn to reproduce the eight inputs at the corresponding eight output
units. Although this is a simple function, the network in this case is constrained
to use only three hidden units. Therefore, the essential information from all eight
input units must be captured by the three learned hidden units.

When BACKPROPAGATION is applied to this task, using each of the eight pos-
sible vectors as training examples, it successfully learns the target function. What
hidden layer representation is created by the gradient descent BACKPROPAGATION
algorithm? By examining the hidden unit values generated by the learned network
for each of the eight possible input vectors, it is easy to see that the learned en-
coding is similar to the familiar standard binary encoding of eight values using
three bits (e.g., 000,001,010,. . . , 111). The exact values of the hidden units for
one typical run of BACKPROPAGATION are shown in Figure 4.7.

This ability of multilayer networks to automatically discover useful repre-
sentations at the hidden layers is a key feature of ANN learning. In contrast to
learning methods that are constrained to use only predefined features provided by
the human designer, this provides an important degree of flexibility that allows
the learner to invent features not explicitly introduced by the human designer. Of
course these invented features must still be computable as sigmoid unit functions
of the provided network inputs. Note when more layers of units are used in the
network, more complex features can be invented. Another example of hidden layer
features is provided in the face recognition application discussed in Section 4.7.

In order to develop a better intuition for the operation of BACKPROPAGATION
in this example, let us examine the operation of the gradient descent procedure in

greater detailt. The network in Figure 4.7 was trained using the algorithm shown
in Table 4.2, with initial weights set to random values in the interval (-0.1,0.1),
learning rate q = 0.3, and no weight momentum (i.e., a! = 0). Similar results
were obtained by using other learning rates and by including nonzero momentum.
The hidden unit encoding shown in Figure 4.7 was obtained after 5000 training
iterations through the outer loop of the algorithm (i.e., 5000 iterations through each
of the eight training examples). Most of the interesting weight changes occurred,
however, during the first 2500 iterations.

We can directly observe the effect of BACKPROPAGATION'S gradient descent
search by plotting the squared output error as a function of the number of gradient
descent search steps. This is shown in the top plot of Figure 4.8. Each line in
this plot shows the squared output error summed over all training examples, for
one of the eight network outputs. The horizontal axis indicates the number of
iterations through the outermost loop of the BACKPROPAGATION algorithm. As this
plot indicates, the sum of squared errors for each output decreases as the gradient
descent procedure proceeds, more quickly for some output units and less quickly
for others.

The evolution of the hidden layer representation can be seen in the second
plot of Figure 4.8. This plot shows the three hidden unit values computed by the
learned network for one of the possible inputs (in particular, 01000000). Again, the
horizontal axis indicates the number of training iterations. As this plot indicates,
the network passes through a number of different encodings before converging to
the final encoding given in Figure 4.7.

Finally, the evolution of individual weights within the network is illustrated
in the third plot of Figure 4.8. This plot displays the evolution of weights con-
necting the eight input units (and the constant 1 bias input) to one of the three
hidden units. Notice that significant changes in the weight values for this hidden
unit coincide with significant changes in the hidden layer encoding and output
squared errors. The weight that converges to a value near zero in this case is the
bias weight wo.

4.6.5 Generalization, Overfitting, and Stopping Criterion
In the description of t'le BACKPROPAGATION algorithm in Table 4.2, the termination
condition for the algcrithm has been left unspecified. What is an appropriate con-
dition for terrninatinp the weight update loop? One obvious choice is to continue
training until the errcr E on the training examples falls below some predetermined
threshold. In fact, this is a poor strategy because BACKPROPAGATION is suscepti-
ble to overfitting the training examples at the cost of decreasing generalization
accuracy over other unseen examples.

To see the dangers of minimizing the error over the training data, consider
how the error E varies with the number of weight iterations. Figure 4.9 shows

t ~ h e source code to reproduce this example is available at http://www.cs.cmu.edu/-tom/mlbook.hhnl.

Sum of squared errors for each output unit

Hidden unit encoding for input 01000000

FIGURE 4.8
Learning the 8 x 3 x 8 Network. The top plot shows the evolving sum of squared errors for each of
the eight output units, as the number of training iterations (epochs) increases. The middle plot shows
the evolving hidden layer representation for the input string "01000000." The bottom plot shows the
evolving weights for one of the three hidden units.

Weights from inputs to one hidden unit
4

3

2

1

-1

-2

I:...........:siii..... ziiii-- -------
....---.-- - _.. __-. .->-.------

/-,-.<--
........... ,*' ,.. ... - ,>, ... ,'... ... ,,,.- -..

..;, - ..< , . ,
,I' ,I ./;. /- ,/' &:>::.--= <, " -I-- ... '.,.. - '..

. .:.
- , - -. -- . - - - - - . . _ .., . . . _ . . _ . .

. -

.-.."... - _ .._ -_ . -. -- _ _ _ _ _ _ _ 1

110 MACHINE LEARNING

Error versus weight updates (example 1)

Validation set error
0.008

0.007

0 5000 loo00 15000 20000
Number of weight updates

0 lo00 2000 3000 4000 5000 6000
Number of weight updates

Error versus weight updates (example 2)
0.08 %** I r 8

FIGURE 4.9
Plots of error E as a function of the number of weight updates, for two different robot perception
tasks. In both learning cases, error E over the training examples decreases monotonically, as gradient
descent minimizes this measure of error. Error over the separate "validation" set of examples typically
decreases at first, then may later increase due to overfitting the training examples. The network most
IikeIy to generalize correctly to unseen data is the network with the lowest error over the validation
set. Notice in the second plot, one must be careful to not stop training too soon when the validation
set error begins to increase.

0.07

0.06

this variation for two fairly typical applications of BACKPROPAGATION. Consider
first the top plot in this figure. The lower of the two lines shows the monotoni-
cally decreasing error E over the training set, as the number of gradient descent
iterations grows. The upper line shows the error E measured over a different vali-
dation set of examples, distinct from the training examples. This line measures the
generalization accuracy of the network-the accuracy with which it fits examples
beyond the training data.

- Training set error * -
Validation set error + y+:L

CHAPTER 4 ARTIFICIAL NEURAL NETWORKS 111

Notice the generalization accuracy measured over the validation examples
first decreases, then increases, even as the error over the training examples contin-
ues to decrease. How can this occur? This occurs because the weights are being
tuned to fit idiosyncrasies of the training examples that are not representative of
the general distribution of examples. The large number of weight parameters in
ANNs provides many degrees of freedom for fitting such idiosyncrasies.

Why does overfitting tend to occur during later iterations, but not during ear-
lier iterations? Consider that network weights are initialized to small random val-
ues. With weights of nearly identical value, only very smooth decision surfaces are
describable. As training proceeds, some weights begin to grow in order to reduce
the error over the training data, and the complexity of the learned decision surface
increases. Thus, the effective complexity of the hypotheses that can be reached by
BACKPROPAGATION increases with the number of weight-tuning iterations. Given
enough weight-tuning iterations, BACKPROPAGATION will often be able to create
overly complex decision surfaces that fit noise in the training data or unrepresen-
tative characteristics of the particular training sample. This overfitting problem is
analogous to the overfitting problem in decision tree learning (see Chapter 3).

Several techniques are available to address the overfitting problem for BACK-
PROPAGATION learning. One approach, known as weight decay, is to decrease each
weight by some small factor during each iteration. This is equivalent to modifying
the definition of E to include a penalty term corresponding to the total magnitude
of the network weights. The motivation for this approach is to keep weight values
small, to bias learning against complex decision surfaces.

One of the most successful methods for overcoming the overfitting problem
is to simply provide a set of validation data to the algorithm in addition to the
training data. The algorithm monitors the error with respect to this validation set,
while using the training set to drive the gradient descent search. In essence, this
allows the algorithm itself to plot the two curves shown in Figure 4.9. How many
weight-tuning iterations should the algorithm perform? Clearly, it should use the
number of iterations that produces the lowest error over the validation set, since
this is the best indicator of network performance over unseen examples. In typical
implementations of this approach, two copies of the network weights are kept:
one copy for training and a separate copy of the best-performing weights thus far,
measured by their error over the validation set. Once the trained weights reach a
significantly higher error over the validation set than the stored weights, training
is terminated and the stored weights are returned as the final hypothesis. When
this procedure is applied in the case of the top plot of Figure 4.9, it outputs the
network weights obtained after 9100 iterations. The second plot in Figure 4.9
shows that it is not always obvious when the lowest error on the validation set
has been reached. In this plot, the validation set error decreases, then increases,
then decreases again. Care must be taken to avoid the mistaken conclusion that
the network has reached its lowest validation set error at iteration 850.

In general, the issue of overfitting and how to overcome it is a subtle one.
The above cross-validation approach works best when extra data are available to
provide a validation set. Unfortunately, however, the problem of overfitting is most

112 MACHINE LEARNWG
I

severe for small training sets. In these cases, a k-fold cross-validation approach
is sometimes used, in which cross validation is performed k different times, each
time using a different partitioning of the data into training and validation sets,
and the results are then averaged. In one version of this approach, the m available
examples are partitioned into k disjoint subsets, each of size m/k. The cross-
validation procedure is then run k times, each time using a different one of these
subsets as the validation set and combining the other subsets for the training set.
Thus, each example is used in the validation set for one of the experiments and
in the training set for the other k - 1 experiments. On each experiment the above
cross-validation approach is used to determine the number of iterations i that yield
the best performance on the validation set. The mean i of these estimates for i
is then calculated, and a final run of BACKPROPAGATION is performed training on
all n examples for i iterations, with no validation set. This procedure is closely
related to the procedure for comparing two learning methods based on limited
data, described in Chapter 5.

4.7 AN ILLUSTRATIVE EXAMPLE: FACE RECOGNITION
To illustrate some of the practical design choices involved in applying BACKPROPA-
GATION, this section discusses applying it to a learning task involving face recogni-
tion. All image data and code used to produce the examples described in this sec-
tion are available at World Wide Web site http://www.cs.cmu.edu/-tomlmlbook.
html, along with complete documentation on how to use the code. Why not try it
yourself?

4.7.1 The Task
The learning task here involves classifying camera images of faces of various
people in various poses. Images of 20 different people were collected, including
approximately 32 images per person, varying the person's expression (happy, sad,
angry, neutral), the direction in which they were looking (left, right, straight ahead,
up), and whether or not they were wearing sunglasses. As can be seen from the
example images in Figure 4.10, there is also variation in the background behind
the person, the clothing worn by the person, and the position of the person's
face within the image. In total, 624 greyscale images were collected, each with a
resolution of 120 x 128, with each image pixel described by a greyscale intensity
value between 0 (black) and 255 (white).

A variety of target functions can be learned from this image data. For ex-
ample, given an image as input we could train an ANN to output the identity of
the person, the direction in which the person is facing, the gender of the person,
whether or not they are wearing sunglasses, etc. All of these target functions can
be learned to high accuracy from this image data, and the reader is encouraged
to try out these experiments. In the remainder of this section we consider one
particular task: learning the direction in which the person is facing (to their left,
right, straight ahead, or upward). I

30 x 32 resolution input images

left straight right
L

Network weights after 1 iteration through each training example

left

Network weights after 100 iterations through each training example

FIGURE 4.10
Learning an artificial neural network to recognize face pose. Here a 960 x 3 x 4 network is trained
on grey-level images of faces (see top), to predict whether a person is looking to their left, right,
ahead, or up. After training on 260 such images, the network achieves an accuracy of 90% over a
separate test set. The learned network weights are shown after one weight-tuning iteration through
the training examples and after 100 iterations. Each output unit (left, straight, right, up) has four
weights, shown by dark (negative) and light (positive) blocks. The leftmost block corresponds to
the weight wg, which determines the unit threshold, and the three blocks to the right correspond to
weights on inputs from the three hidden units. The weights from the image pixels into each hidden
unit are also shown, with each weight plotted in the position of the corresponding image pixel.

4.7.2 Design Choices
In applying BACKPROPAGATION to any given task, a number of design choices
must be made. We summarize these choices below for our task of learning the
direction in which a person is facing. Although no attempt was made to determine
the precise optimal design choices for this task, the design described here learns

the target function quite well. After training on a set of 260 images, classification
accuracy over a separate test set is 90%. In contrast, the default accuracy achieved
by randomly guessing one of the four possible face directions is 25%.

Input encoding. Given that the ANN input is to be some representation of the
image, one key design choice is how to encode this image. For example, we could
preprocess the image to extract edges, regions of uniform intensity, or other local
image features, then input these features to the network. One difficulty with this
design option is that it would lead to a variable number of features (e.g., edges)
per image, whereas the ANN has a fixed number of input units. The design option
chosen in this case was instead to encode the image as a fixed set of 30 x 32 pixel
intensity values, with one network input per pixel. The pixel intensity values
ranging from 0 to 255 were linearly scaled to range from 0 to 1 so that network
inputs would have values in the same interval as the hidden unit and output unit
activations. The 30 x 32 pixel image is, in fact, a coarse resolution summary of
the original 120 x 128 captured image, with each coarse pixel intensity calculated
as the mean of the corresponding high-resolution pixel intensities. Using this
coarse-resolution image reduces the number of inputs and network weights to
a much more manageable size, thereby reducing computational demands, while
maintaining sufficient resolution to correctly classify the images. Recall from
Figure 4.1 that the ALVINN system uses a similar coarse-resolution image as
input to the network. One interesting difference is that in ALVINN, each coarse
resolution pixel intensity is obtained by selecting the intensity of a single pixel at
random from the appropriate region within the high-resolution image, rather than
taking the mean of all pixel intensities within this region. The motivation for this
ic ALVINN is that it significantly reduces the computation required to produce the
coarse-resolution image from the available high-resolution image. This efficiency
is especially important when the network must be used to process many images
per second while autonomously driving the vehicle.

Output encoding. The ANN must output one of four values indicating the di-
rection in which the person is looking (left, right, up, or straight). Note we could
encode this four-way classification using a single output unit, assigning outputs
of, say, 0.2,0.4,0.6, and 0.8 to encode these four possible values. Instead, we
use four distinct output units, each representing one of the four possible face di-
rections, with the highest-valued output taken as the network prediction. This is
often called a 1 -0f-n output encoding. There are two motivations for choosing the
1-of-n output encoding over the single unit option. First, it provides more degrees
of freedom to the network for representing the target function (i.e., there are n
times as many weights available in the output layer of units). Second, in the 1-of-n
encoding the difference between the highest-valued output and the second-highest
can be used as a measure of the confidence in the network prediction (ambiguous
classifications may result in near or exact ties). A further design choice here is
"what should be the target values for these four output units?' One obvious choice
would be to use the four target values (1,0,0,O) to encode a face looking to the

left, (0,1,0,O) to encode a face looking straight, etc. Instead of 0 and 1 values,
we use values of 0.1 and 0.9, so that (0.9,O. 1,0.1,0.1) is the target output vector
for a face looking to the left. The reason for avoiding target values of 0 and 1
is that sigmoid units cannot produce these output values given finite weights. If
we attempt to train the network to fit target values of exactly 0 and 1, gradient
descent will force the weights to grow without bound. On the other hand, values
of 0.1 and 0.9 are achievable using a sigmoid unit with finite weights.

Network graph structure. As described earlier, BACKPROPAGATION can be ap-
plied to any acyclic directed graph of sigmoid units. Therefore, another design
choice we face is how many units to include in the network and how to inter-
connect them. The most common network structure is a layered network with
feedforward connections from every unit in one layer to every unit in the next.
In the current design we chose this standard structure, using two layers of sig-
moid units (one hidden layer and one output layer). It is common to use one or
two layers of sigmoid units and, occasionally, three layers. It is not common to
use more layers than this because training times become very long and because
networks with three layers of sigmoid units can already express a rich variety of
target functions (see Section 4.6.2). Given our choice of a layered feedforward
network with one hidden layer, how many hidden units should we include? In the
results reported in Figure 4.10, only three hidden units were used, yielding a test
set accuracy of 90%. In other experiments 30 hidden units were used, yielding a
test set accuracy one to two percent higher. Although the generalization accuracy
varied only a small amount between these two experiments, the second experiment
required significantly more training time. Using 260 training images, the training
time was approximately 1 hour on a Sun Sparc5 workstation for the 30 hidden unit
network, compared to approximately 5 minutes for the 3 hidden unit network. In
many applications it has been found that some minimum number of hidden units
is required in order to learn the target function accurately and that extra hidden
units above this number do not dramatically affect generalization accuracy, pro-
vided cross-validation methods are used to determine how many gradient descent
iterations should be performed. If such methods are not used, then increasing the
number of hidden units often increases the tendency to overfit the training data,
thereby reducing generalization accuracy.

Other learning algorithm parameters. In these learning experiments the learn-
ing rate r] was set to 0.3, and the momentum a! was set to 0.3. Lower values for both
parameters produced roughly equivalent generalization accuracy, but longer train-
ing times. If these values are set too high, training fails to converge to a network
with acceptable error over the training set. Full gradient descent was used in all
these experiments (in contrast to the stochastic approximation to gradient descent
in the algorithm of Table 4.2). Network weights in the output units were initial-
ized to small random values. However, input unit weights were initialized to zero,
because this yields much more intelligible visualizations of the learned weights
(see Figure 4.10), without any noticeable impact on generalization accuracy. The

number of training iterations was selected by partitioning the available data into
a training set and a separate validation set. Gradient descent was used to min-
imize the error over the training set, and after every 50 gradient descent steps
the performance of the network was evaluated over the validation set. The final
selected network was the one with the highest accuracy over the validation set.
See Section 4.6.5 for an explanation and justification of this procedure. The final
reported accuracy (e-g., 90% for the network in Figure 4.10) was measured over
yet a third set of test examples that were not used in any way to influence training.

4.7.3 Learned Hidden Representations
It is interesting to examine the learned weight values for the 2899 weights in the
network. Figure 4.10 depicts the values of each of these weights after one iteration
through the weight update for all training examples, and again after 100 iterations.

To understand this diagram, consider first the four rectangular blocks just
below the face images in the figure. Each of these rectangles depicts the weights
for one of the four output units in the network (encoding left, straight, right, and
up). The four squares within each rectangle indicate the four weights associated
with this output unit-the weight wo, which determines the unit threshold (on
the left), followed by the three weights connecting the three hidden units to this
output. The brightness of the square indicates the weight value, with bright white
indicating a large positive weight, dark black indicating a large negative weight,
and intermediate shades of grey indicating intermediate weight values. For ex-
ample, the output unit labeled "up" has a near zero wo threshold weight, a large
positive weight from the first hidden unit, and a large negative weight from the
second hidden unit.

The weights of the hidden units are shown directly below those for the output
units. Recall that each hidden unit receives an input from each of the 30 x 32
image pixels. The 30 x 32 weights associated with these inputs are displayed so
that each weight is in the position of the corresponding image pixel (with the wo
threshold weight superimposed in the top left of the array). Interestingly, one can
see that the weights have taken on values that are especially sensitive to features
in the region of the image in which the face and body typically appear.

The values of the network weights after 100 gradient descent iterations
through each training example are shown at the bottom of the figure. Notice the
leftmost hidden unit has very different weights than it had after the first iteration,
and the other two hidden units have changed as well. It is possible to understand
to some degree the encoding in this final set of weights. For example, consider the
output unit that indicates a person is looking to his right. This unit has a strong
positive weight from the second hidden unit and a strong negative weight from
the third hidden unit. Examining the weights of these two hidden units, it is easy
to see that if the person's face is turned to his right (i.e., our left), then his bright
skin will roughly align with strong positive weights in this hidden unit, and his
dark hair will roughly align with negative weights, resulting in this unit outputting
a large value. The same image will cause the third hidden unit to output a value

close to zero, as the bright face will tend to align with the large negative weights
in this case.

4.8 ADVANCED TOPICS IN ARTIFICIAL NEURAL NETWORKS
4.8.1 Alternative Error Functions
As noted earlier, gradient descent can be performed for any function E that is
differentiable with respect to the parameterized hypothesis space. While the basic
BAcWROPAGATION algorithm defines E in terms of the sum of squared errors
of the network, other definitions have been suggested in order to incorporate
other constraints into the weight-tuning rule. For each new definition of E a new
weight-tuning rule for gradient descent must be derived. Examples of alternative
definitions of E include

a Adding a penalty term for weight magnitude. As discussed above, we can
add a term to E that increases with the magnitude of the weight vector.
This causes the gradient descent search to seek weight vectors with small
magnitudes, thereby reducing the risk of overfitting. One way to do this is
to redefine E as

which yields a weight update rule identical to the BACKPROPAGATION rule,
except that each weight is multiplied by the constant (1 - 2yq) upon each
iteration. Thus, choosing this definition of E is equivalent to using a weight
decay strategy (see Exercise 4.10.)

a Adding a term for errors in the slope, or derivative of the target func-
tion. In some cases, training information may be available regarding desired
derivatives of the target function, as well as desired values. For example,
Simard et al. (1992) describe an application to character recognition in which
certain training derivatives are used to constrain the network to learn char-
acter recognition functions that are invariant of translation within the im-
age. Mitchell and Thrun (1993) describe methods for calculating training
derivatives based on the learner's prior knowledge. In both of these sys-
tems (described in Chapter 12), the error function is modified to add a term
measuring the discrepancy between these training derivatives and the actual
derivatives of the learned network. One example of such an error function is

Here x: denotes the value of the jth input unit for training example d.
Thus, 2 is the training derivative describing how the target output value

118 MACHINE LEARNING

tkd should vary with a change in the input xi. Similarly, 9 denotes the
ax,

corresponding derivative of the actual learned network. The constant ,u de-
termines the relative weight placed on fitting the training values versus the
training derivatives.

0 Minimizing the cross entropy of the network with respect to the target values.
Consider learning a probabilistic function, such as predicting whether a loan
applicant will pay back a loan based on attributes such as the applicant's age
and bank balance. Although the training examples exhibit only boolean target
values (either a 1 or 0, depending on whether this applicant paid back the
loan), the underlying target function might be best modeled by outputting the
probability that the given applicant will repay the loan, rather than attempting
to output the actual 1 and 0 value for each input instance. Given such
situations in which we wish for the network to output probability estimates,
it can be shown that the best (i.e., maximum likelihood) probability estimates
are given by the network that minimizes the cross entropy, defined as

Here od is the probability estimate output by the network for training ex-
ample d, and td is the 1 or 0 target value for training example d. Chapter 6
discusses when and why the most probable network hypothesis is the one
that minimizes this cross entropy and derives the corresponding gradient
descent weight-tuning rule for sigmoid units. That chapter also describes
other conditions under which the most probable hypothesis is the one that
minimizes the sum of squared errors.

0 Altering the effective error function can also be accomplished by weight
sharing, or "tying together" weights associated with different units or inputs.
The idea here is that different network weights are forced to take on identical
values, usually to enforce some constraint known in advance to the human
designer. For example, Waibel et al. (1989) and Lang et al. (1990) describe
an application of neural networks to speech recognition, in which the net-
work inputs are the speech frequency components at different times within a
144 millisecond time window. One assumption that can be made in this ap-
plication is that the frequency components that identify a specific sound (e.g.,
"eee") should be independent of the exact time that the sound occurs within
the 144 millisecond window. To enforce this constraint, the various units that
receive input from different portions of the time window are forced to share
weights. The net effect is to constrain the space of potential hypotheses,
thereby reducing the risk of overfitting and improving the chances for accu-
rately generalizing to unseen situations. Such weight sharing is typically im-
plemented by first updating each of the shared weights separately within each
unit that uses the weight, then replacing each instance of the shared weight by
the mean of their values. The result of this procedure is that shared weights
effectively adapt to a different error function than do the unshared weights.

4.8.2 Alternative Error Minimization Procedures
While gradient descent is one of the most general search methods for finding a
hypothesis to minimize the error function, it is not always the most efficient. It
is not uncommon for BACKPROPAGATION to require tens of thousands of iterations
through the weight update loop when training complex networks. For this reason,
a number of alternative weight optimization algorithms have been proposed and
explored. To see some of the other possibilities, it is helpful to think of a weight-
update method as involving two decisions: choosing a direction in which to alter
the current weight vector and choosing a distance to move. In BACKPROPAGATION,
the direction is chosen by taking the negative of the gradient, and the distance is
determined by the learning rate constant q.

One optimization method, known as line search, involves a different ap-
proach to choosing the distance for the weight update. In particular, once a line is
chosen that specifies the direction of the update, the update distance is chosen by
finding the minimum of the error function along this line. Notice this can result
in a very large or very small weight update, depending on the position of the
point along the line that minimizes error. A second method, that builds on the
idea of line search, is called the conjugate gradient method. Here, a sequence of
line searshes is performed to search for a minimum in the error surface. On the
first step in this sequence, the direction chosen is the negative of the gradient.
On each subsequent step, a new direction is chosen so that the component of the
error gradient that has just been made zero, remains zero.

While alternative error-minimization methods sometimes lead to improved
efficiency in training the network, methods such as conjugate gradient tend to
have no significant impact on the generalization error of the final network. The
only likely impact on the final error is that different error-minimization procedures
may fall into different local minima. Bishop (1996) contains a general discussion
of several parameter optimization methods for training networks.

4.8.3 Recurrent Networks
Up to this point we have considered only network topologies that correspond
to acyclic directed graphs. Recurrent networks are artificial neural networks that
apply to time series data and that use outputs of network units at time t as the
input to other units at time t + 1 . In this way, they support a form of directed
cycles in the network. To illustrate, consider the time series prediction task of
predicting the next day's stock market average y(t + 1) based on the current day's
economic indicators x(t) . Given a time series of such data, one obvious approach
is to train a feedforward network to predict y(t + 1) as its output, based on the
input values x(t) . Such a network is shown in Figure 4.11(a).

One limitation of such a network is that the prediction of y(t + 1) depends
only on x(t) and cannot capture possible dependencies of y (t + 1) on earlier values
of x. This might be necessary, for example, if tomorrow's stock market average
~ (t + 1) depends on the difference between today's economic indicator values
x (t) and yesterday's values x(t - 1) . Of course we could remedy this difficulty

I 120 MACHINE LEARNING

(4 Feedforward network (b) Recurrent network

x(t - 2) c(t - 2)
(d Recurrent network

unfolded in time

FIGURE 4.11
Recurrent networks.

by making both x(t) and x(t - 1) inputs to the feedforward network. However,
if we wish the network to consider an arbitrary window of time in the past when
predicting y(t + l), then a different solution is required. The recurrent network
shown in Figure 4.1 1(b) provides one such solution. Here, we have added a new
unit b to the hidden layer, and new input unit c(t). The value of c(t) is defined
as the value of unit b at time t - 1; that is, the input value c(t) to the network at
one time step is simply copied from the value of unit b on the previous time step.
Notice this implements a recurrence relation, in which b represents information
about the history of network inputs. Because b depends on both x(t) and on c(t),
it is possible for b to summarize information from earlier values of x that are
arbitrarily distant in time. Many other network topologies also can be used to

CHAPTER 4 ARTIFICIAL NEURAL NETWORKS 121

represent recurrence relations. For example, we could have inserted several layers
of units between the input and unit b, and we could have added several context

in parallel where we added the single units b and c.
How can such recurrent networks be trained? There are several variants of

recurrent networks, and several training methods have been proposed (see, for
example, Jordan 1986; Elman 1990; Mozer 1995; Williams and Zipser 1995).
Interestingly, recurrent networks such as the one shown in Figure 4.1 1(b) can be
trained using a simple variant of BACKPROPAGATION. TO understand how, consider
Figure 4.11(c), which shows the data flow of the recurrent network "unfolded
in time. Here we have made several copies of the recurrent network, replacing
the feedback loop by connections between the various copies. Notice that this
large unfolded network contains no cycles. Therefore, the weights in the unfolded
network can be trained directly using BACKPROPAGATION. Of course in practice
we wish to keep only one copy of the recurrent network and one set of weights.
Therefore, after training the unfolded network, the final weight wji in the recurrent
network can be taken to be the mean value of the corresponding wji weights in
the various copies. Mozer (1995) describes this training process in greater detail.
In practice, recurrent networks are more difficult to train than networks with no
feedback loops and do not generalize as reliably. However, they remain important
due to their increased representational power.

4.8.4 Dynamically Modifying Network Structure
Up to this point we have considered neural network learning as a problem of
adjusting weights within a fixed graph structure. A variety of methods have been
proposed to dynamically grow or shrink the number of network units and intercon-
nections in an attempt to improve generalization accuracy and training efficiency.

One idea is to begin with a network containing no hidden units, then grow
the network as needed by adding hidden units until the training error is reduced
to some acceptable level. The CASCADE-CORRELATION algorithm (Fahlman and
Lebiere 1990) is one such algorithm. CASCADE-CORRELATION begins by construct-
ing a network with no hidden units. In the case of our face-direction learning task,
for example, it would construct a network containing only the four output units
completely connected to the 30 x 32 input nodes. After this network is trained for
some time, we may well find that there remains a significant residual error due
to the fact that the target function cannot be perfectly represented by a network
with this single-layer structure. In this case, the algorithm adds a hidden unit,
choosing its weight values to maximize the correlation between the hidden unit
value and the residual error of the overall network. The new unit is now installed
into the network, with its weight values held fixed, and a new connection from
this new unit is added to each output unit. The process is now repeated. The
original weights are retrained (holding the hidden unit weights fixed), the residual
error is checked, and a second hidden unit added if the residual error is still above
threshold. Whenever a new hidden unit is added, its inputs include all of the orig-
inal network inputs plus the outputs of any existing hidden units. The network is

122 MACHINE LEARNING

grown in this fashion, accumulating hidden units until the network residual enor
is reduced to some acceptable level. Fahlman and Lebiere (1990) report cases in
which CASCADE-CORRELATION significantly reduces training times, due to the fact
that only a single layer of units is trained at each step. One practical difficulty
is that because the algorithm can add units indefinitely, it is quite easy for it to
overfit the training data, and precautions to avoid overfitting must be taken.

A second idea for dynamically altering network structure is to take the
opposite approach. Instead of beginning with the simplest possible network and
adding complexity, we begin with a complex network and prune it as we find that
certain connections are inessential. One way to decide whether a particular weight
is inessential is to see whether its value is close to zero. A second way, which
appears to be more successful in practice, is to consider the effect that a small
variation in the weight has on the error E. The effect on E of varying w (i.e., g)
can be taken as a measure of the salience of the connection. LeCun et al. (1990)
describe a process in which a network is trained, the least salient connections
removed, and this process iterated until some termination condition is met. They
refer to this as the "optimal brain damage" approach, because at each step the
algorithm attempts to remove the least useful connections. They report that in
a character recognition application this approach reduced the number of weights
in a large network by a factor of 4, with a slight improvement in generalization
accuracy and a significant improvement in subsequent training efficiency.

In general, techniques for dynamically modifying network structure have
met with mixed success. It remains to be seen whether they can reliably improve
on the generalization accuracy of BACKPROPAGATION. However, they have been
shown in some cases to provide significant improvements in training times.

4.9 SUMMARY AND FURTHER READING
Main points of this chapter include:

0 Artificial neural network learning provides a practical method for learning
real-valued and vector-valued functions over continuous and discrete-valued
attributes, in a way that is robust to noise in the training data. The BACKPROP-
AGATION algorithm is the most common network learning method and has
been successfully applied to a variety of learning tasks, such as handwriting
recognition and robot control.

0 The hypothesis space considered by the BACKPROPAGATION algorithm is the
space of all functions that can be represented by assigning weights to the
given, fixed network of interconnected units. Feedforward networks contain-
ing three layers of units are able to approximate any function to arbitrary
accuracy, given a sufficient (potentially very large) number of units in each
layer. Even networks of practical size are capable of representing a rich
space of highly nonlinear functions, making feedforward networks a good
choice for learning discrete and continuous functions whose general form is
unknown in advance.

BACKPROPAGATION searches the space of possible hypotheses using gradient
descent to iteratively reduce the error in the network fit to the training
examples. Gradient descent converges to a local minimum in the training
error with respect to the network weights. More generally, gradient descent is
a potentially useful method for searching many continuously parameterized
hypothesis spaces where the training error is a differentiable function of
hypothesis parameters.
One of the most intriguing properties of BACKPROPAGATION is its ability to
invent new features that are not explicit in the input to the network. In par-
ticular, the internal (hidden) layers of multilayer networks learn to represent
intermediate features that are useful for learning the target function and that
are only implicit in the network inputs. This capability is illustrated, for ex-
ample, by the ability of the 8 x 3 x 8 network in Section 4.6.4 to invent the
boolean encoding of digits from 1 to 8 and by the image features represented
by the hidden layer in the face-recognition application of Section 4.7.
Overfitting the training data is an important issue in ANN learning. Overfit-
ting results in networks that generalize poorly to new data despite excellent
performance over the training data. Cross-validation methods can be used to
estimate an appropriate stopping point for gradient descent search and thus
to minimize the risk of overfitting.

0 Although BACKPROPAGATION is the most common ANN learning algorithm,
many others have been proposed, including algorithms for more specialized
tasks. For example, recurrent neural network methods train networks con-
taining directed cycles, and algorithms such as CASCADE CORRELATION alter
the network structure as well as the network weights.

Additional information on ANN learning can be found in several other chap-
ters in this book. A Bayesian justification for choosing to minimize the sum of
squared errors is given in Chapter 6, along with a justification for minimizing
the cross-entropy instead of the sum of squared errors in other cases. Theoretical
results characterizing the number of training examples needed to reliably learn
boolean functions and the Vapnik-Chervonenkis dimension of certain types of
networks can be found in Chapter 7. A discussion of overfitting and how to avoid
it can be found in Chapter 5. Methods for using prior knowledge to improve the
generalization accuracy of ANN learning are discussed in Chapter 12.

Work on artificial neural networks dates back to the very early days of
computer science. McCulloch and Pitts (1943) proposed a model of a neuron
that corresponds to the perceptron, and a good deal of work through the 1960s
explored variations of this model. During the early 1960s Widrow and Hoff (1960)
explored perceptron networks (which they called "adelines") and the delta rule,
and Rosenblatt (1962) proved the convergence of the perceptron training rule.
However, by the late 1960s it became clear that single-layer perceptron networks
had limited representational capabilities, and no effective algorithms were known
for training multilayer networks. Minsky and Papert (1969) showed that even

simple functions such as XOR could not be represented or learned with single-
layer perceptron networks, and work on ANNs receded during the 1970s.

During the mid-1980s work on ANNs experienced a resurgence, caused in
large part by the invention of BACKPROPAGATION and related algorithms for train-
ing multilayer networks (Rumelhart and McClelland 1986; Parker 1985). These
ideas can be traced to related earlier work (e.g., Werbos 1975). Since the 1980s,
BACKPROPAGATION has become a widely used learning method, and many other
ANN approaches have been actively explored. The advent of inexpensive com-
puters during this same period has allowed experimenting with computationally
intensive algorithms that could not be thoroughly explored during the 1960s.

A number of textbooks are devoted to the topic of neural network learning.
An early but still useful book on parameter learning methods for pattern recog-
nition is Duda and Hart (1973). The text by Widrow and Stearns (1985) covers
perceptrons and related single-layer networks and their applications. Rumelhart
and McClelland (1986) produced an edited collection of papers that helped gen-
erate the increased interest in these methods beginning in the mid-1980s. Recent
books on neural network learning include Bishop (1996); Chauvin and Rumelhart
(1995); Freeman and Skapina (1991); Fu (1994); Hecht-Nielsen (1990); and Hertz
et al. (1991).

EXERCISES
4.1. What are the values of weights wo, w l , and w2 for the perceptron whose decision

surface is illustrated in Figure 4.3? Assume the surface crosses the xl axis at -1,
and the x2 axis at 2.

4.2. Design a two-input perceptron that implements the boolean function A A -. B. Design
a two-layer network of perceptrons that implements A XO R B.

4.3. Consider two perceptrons defined by the threshold expression wo + w l x l + ~ 2 x 2 > 0.
Perceptron A has weight values

and perceptron B has the weight values

True or false? Perceptron A is more-general~han perceptron B. (more-general~han
is defined in Chapter 2.)

4.4. Implement the delta training rule for a two-input linear unit. Train it to fit the target
concept -2 + X I + 2x2 > 0. Plot the error E as a function of the number of training
iterations. Plot the decision surface after 5, 10, 50, 100, . . . , iterations.
(a) Try this using various constant values for 17 and using a decaying learning rate

of qo/i for the ith iteration. Which works better?
(b) Try incremental and batch learning. Which converges more quickly? Consider

both number of weight updates and total execution time.
4.5. Derive a gradient descent training rule for a single unit with output o, where

4.6. Explain informally why the delta training rule in Equation (4.10) is only an approx-
imation to the true gradient descent rule of Equation (4.7).

4.7. Consider a two-layer feedforward ANN with two inputs a and b, one hidden unit c,
and one output unit d. This network has five weights (w,, web, wd, wdc, wdO), where
w,o represents the threshold weight for unit x . Initialize these weights to the values
(. 1, . l , . l , . l , .I), then give their values after each of the first two training iterations of
the BACKPROPAGATION algorithm. Assume learning rate 17 = .3, momentum a! = 0.9,
incremental weight updates, and the following training examples:

a b d
1 0 1
0 1 0

4.8. Revise the BACKPROPAGATION algorithm in Table 4.2 so that it operates on units
using the squashing function tanh in place of the sigmoid function. That is, assume
the output of a single unit is o = t anh(6 .x ') . Give the weight update rule for output
layer weights and hidden layer weights. Hint: tanh'(x) = 1 - tanh2(x) .

4.9. Recall the 8 x 3 x 8 network described in Figure 4.7. Consider trying to train a 8 x 1 x 8
network for the same task; that is, a network with just one hidden unit. Notice the
eight training examples in Figure 4.7 could be represented by eight distinct values for
the single hidden unit (e.g., 0.1,0.2, . . . ,0.8). Could a network with just one hidden
unit therefore learn the identity function defined over these training examples? Hint:
Consider questions such as "do there exist values for the hidden unit weights that
can create the hidden unit encoding suggested above?'"do there exist values for
the output unit weights that could correctly decode this encoding of the input?'and
"is gradient descent likely to find such weights?'

4.10. Consider the alternative error function described in Section 4.8.1

Derive the gradient descent update rule for this definition of E. Show that it can be
implemented by multiplying each weight by some constant before performing the
standard gradient descent update given in Table 4.2.

4.11. Apply BACKPROPAGATION to the task of face recognition. See World Wide Web
URL http://www.cs.cmu.edu/-tomlbook.html for details, including face-image data,
BACKPROPAGATION code, and specific tasks.

4.12. Consider deriving a gradient descent algorithm to learn target concepts corresponding
to rectangles in the x , y plane. Describe each hypothesis by the x and y coordinates
of the lower-left and upper-right comers of the rectangle - Ilx, Ily, urn, and ury
respectively. An instance (x , y) is labeled positive by hypothesis (l l x , l l y , u rx , u ry)
if and only if the point (x , y) lies inside the corresponding rectangle. Define error
E as in the chapter. Can you devise a gradient descent algorithm to learn such
rectangle hypotheses? Notice that E is not a continuous function of l l x , Ily, u rx ,
and ury , just as in the case of perceptron learning. (Hint: Consider the two solutions
used for perceptrons: (1) changing the classification rule to make output predictions
continuous functions of the inputs, and (2) defining an alternative error-such as
distance to the rectangle center-as in using the delta rule to train perceptrons.)
Does your algorithm converge to the minimum error hypothesis when the positive
and negative examples are separable by a rectangle? When they are not? Do you

have problems with local minima? How does your algorithm compare to symbolic
methods for learning conjunctions of feature constraints?

REFERENCES
Bishop, C. M. (1996). Neural networks for pattern recognition. Oxford, England: Oxford University

Press.
Chauvin, Y., & Rumelhart, D. (1995). BACKPROPAGATION: Theory, architectures, and applications

(edited collection). Hillsdale, NJ: Lawrence Erlbaum Assoc.
Churchland, P. S., & Sejnowski, T. J. (1992). The computational brain. Cambridge, MA: The MIT

Press.
Cyhenko, G. (1988). Continuous valued neural networks with two hidden layers are sufficient (Tech-

nical Report). Department of Computer Science, Tufts University, Medford, MA.
Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function. Mathematics of Con-

trol, Signals, and Systems, 2, 303-3 14.
Cottrell, G. W. (1990). Extracting features from faces using compression networks: Face, identity,

emotion and gender recognition using holons. In D. Touretzky (Ed.), Connection Models:
Proceedings of the 1990 Summer School. San Mateo, CA: Morgan Kaufmann.

Dietterich, T. G., Hild, H., & Bakiri, G. (1995). A comparison of ID3 and BACKPROPAGATION for
English text-to-speech mapping. Machine Learning, 18(1), 51-80.

Duda, R., & Hart, P. (1973). Pattern class@cation and scene analysis. New York: John Wiley &
Sons.

Elman, J. L. (1990). Finding structure in time. Cognitive Science, 14, 179-21 1.
Fahlman, S., & Lebiere, C. (1990). The CASCADE-CORRELATION learning architecture (Technical

Report CMU-CS-90-100). Computer Science Department, Carnegie Mellon University, Pitts-
burgh, PA.

Freeman, J. A., & Skapura, D. M. (1991). Neural networks. Reading, MA: Addison Wesley.
Fu, L. (1994). Neural networks in computer intelligence. New York: McGraw Hill.
Gabriel, M. & Moore, J. (1990). Learning and computational neuroscience: Foundations of adaptive

networks (edited collection). Cambridge, MA: The MIT Press.
Hecht-Nielsen, R. (1990). Neurocomputing. Reading, MA: Addison Wesley.
Hertz, J., Krogh, A., & Palmer, R.G. (1991). Introduction to the theory of neural computation. Read-

ing, MA: Addison Wesley.
Homick, K., Stinchcombe, M., & White, H. (1989). Multilayer feedforward networks are universal

approximators. Neural Networks, 2, 359-366.
Huang, W. Y., & Lippmann, R. P. (1988). Neural net and traditional classifiers. In Anderson (Ed.),

Neural Information Processing Systems (pp. 387-396).
Jordan, M. (1986). Attractor dynamics and parallelism in a connectionist sequential machine. Pro-

ceedings of the Eighth Annual Conference of the Cognitive Science Society (pp. 531-546).
Kohonen, T. (1984). Self-organization and associative memory. Berlin: Springer-Verlag.
Lang, K. J., Waibel, A. H., & Hinton, G. E. (1990). A time-delay neural network architecture for

isolated word recognition. Neural Networks, 3, 3343.
LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., & Jackel, L.D.

(1989). BACKPROPAGATION applied to handwritten zip code recognition. Neural Computa-
tion, l(4).

LeCun, Y., Denker, J. S., & Solla, S. A. (1990). Optimal brain damage. In D. Touretzky (Ed.),
Advances in Neural Information Processing Systems (Vol. 2, pp. 598405). San Mateo, CA:
Morgan Kaufmann.

Manke, S., Finke, M. & Waibel, A. (1995). NPEN++: a writer independent, large vocabulary on-
line cursive handwriting recognition system. Proceedings of the International Conference on
Document Analysis and Recognition. Montreal, Canada: IEEE Computer Society.

McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity.
Bulletin of Mathematical Biophysics, 5 , 115-133.

Mitchell, T. M., & Thrun, S. B. (1993). Explanation-based neural network learning for robot control.
In Hanson, Cowan, & Giles (Eds.), Advances in neural informution processing systems 5
(pp. 287-294). San Francisco: Morgan Kaufmann.

Mozer, M. (1995). A focused BACKPROPAGATION algorithm for temporal pattern recognition. In
Y. Chauvin & D. Rumelhart (Eds.), Backpropagation: Theory, architectures, and applications
(pp. 137-169). Hillsdale, NJ: Lawrence Erlbaum Associates.

Minsky, M., & Papert, S. (1969). Perceptrons. Cambridge, MA: MIT Press.
Nilsson, N. J. (1965). Learning machines. New York: McGraw Hill.
Parker, D. (1985). Learning logic (MIT Technical Report TR-47). MIT Center for Research in

Computational Economics and Management Science.
pomerleau, D. A. (1993). Knowledge-based training of artificial neural networks for autonomous

robot driving. In J. Come11 & S. Mahadevan (Eds.), Robot Learning (pp. 19-43). Boston:
Kluwer Academic Publishers.

Rosenblatt, F. (1959). The perceptron: a probabilistic model for information storage and organization
in the brain. Psychological Review, 65, 386-408.

Rosenblatt, F. (1962). Principles of neurodynamics. New York: Spartan Books.
Rumelhart, D. E., & McClelland, J. L. (1986). Parallel distributed processing: exploration in the

microstructure of cognition (Vols. 1 & 2). Cambridge, MA: MIT Press.
Rumelhart, D., Widrow, B., & Lehr, M. (1994). The basic ideas in neural networks. Communications

of the ACM, 37(3), 87-92.
Shavlik, J. W., Mooney, R. J., & Towell, G. G. (1991). Symbolic and neural learning algorithms:

An experimental comparison. Machine Learning, 6(2), 11 1-144.
Simard, P. S., Victorri, B., LeCun, Y., & Denker, J. (1992). Tangent prop--A formalism for specifying

selected invariances in an adaptive network. In Moody, et al. (Eds.), Advances in Neural
Information Processing Systems 4 (pp. 895-903). San Francisco: Morgan Kaufmann.

Waibel, A., Hanazawa, T., Hinton, G., Shikano, K., & Lang, K. (1989). Phoneme recognition using
time-delay neural networks. ZEEE Transactions on Acoustics, Speech and Signal Processing.

Weiss, S., & Kapouleas, I. (1989). An empirical comparison of pattern recognition, neural nets, and
machine learning classification methods. Proceedings of the Eleventh ZJCAI @p. 781-787).
San Francisco: Morgan Kaufmann.

Werbos, P. (1975). Beyond regression: New tools for prediction and analysis in the behavioral sciences
(Ph.D. dissertation). Harvard University.

Widrow, B., & Hoff, M. E. (1960). Adaptive switching circuits. IRE WESCON Convention Record,
4,96104.

Widrow, B., & Stearns, S. D. (1985). Adaptive signalprocessing. Signal Processing Series. Englewood
Cliffs, NJ: Prentice Hall.

Williams, R., & Zipser, D. (1995). Gradient-based learning algorithms for recurrent networks and their
computational complexity. In Y. Chauvin & D. Rumelhart (Eds.), Backpropagation: Theory,
architectures, and applications (pp. 433-486). Hillsdale, NJ: Lawrence Erlbaum Associates.

Zometzer, S. F., Davis, J. L., & Lau, C. (1994). An introduction to neural and electronic neiworks
(edited collection) (2nd ed.). New York: Academic Press.

CHAPTER

EVALUATING
HYPOTHESES

Empirically evaluating the accuracy of hypotheses is fundamental to machine learn-
ing. This chapter presents an introduction to statistical methods for estimating hy-
pothesis accuracy, focusing on three questions. First, given the observed accuracy
of a hypothesis over a limited sample of data, how well does this estimate its ac-
curacy over additional examples? Second, given that one hypothesis outperforms
another over some sample of data, how probable is it that this hypothesis is more
accurate in general? Third, when data is limited what is the best way to use this
data to both learn a hypothesis and estimate its accuracy? Because limited samples
of data might misrepresent the general distribution of data, estimating true accuracy
from such samples can be misleading. Statistical methods, together with assump-
tions about the underlying distributions of data, allow one to bound the difference
between observed accuracy over the sample of available data and the true accuracy
over the entire distribution of data.

5.1 MOTIVATION
In many cases it is important to evaluate the performance of learned hypotheses
as precisely as possible. One reason is simply to understand whether to use the
hypothesis. For instance, when learning from a limited-size database indicating
the effectiveness of different medical treatments, it is important to understand as
precisely as possible the accuracy of the learned hypotheses. A second reason is
that evaluating hypotheses is an integral component of many learning methods.
For example, in post-pruning decision trees to avoid overfitting, we must evaluate

the impact of possible pruning steps on the accuracy of the resulting decision tree.
Therefore it is important to understand the likely errors inherent in estimating the
accuracy of the pruned and unpruned tree.

Estimating the accuracy of a hypothesis is relatively straightforward when
data is plentiful. However, when we must learn a hypothesis and estimate its
future accuracy given only a limited set of data, two key difficulties arise:

Bias in the estimate. First, the observed accuracy of the learned hypothesis
over the training examples is often a poor estimator of its accuracy over
future examples. Because the learned hypothesis was derived from these
examples, they will typically provide an optimistically biased estimate of
hypothesis accuracy over future examples. This is especially likely when
the learner considers a very rich hypothesis space, enabling it to overfit the
training examples. To obtain an unbiased estimate of future accuracy, we
typically test the hypothesis on some set of test examples chosen indepen-
dently of the training examples and the hypothesis.

a Variance in the estimate. Second, even if the hypothesis accuracy is mea-
sured over an unbiased set of test examples independent of the training
examples, the measured accuracy can still vary from the true accuracy, de-
pending on the makeup of the particular set of test examples. The smaller
the set of test examples, the greater the expected variance.

This chapter discusses methods for evaluating learned hypotheses, methods
for comparing the accuracy of two hypotheses, and methods for comparing the
accuracy of two learning algorithms when only limited data is available. Much
of the discussion centers on basic principles from statistics and sampling theory,
though the chapter assumes no special background in statistics on the part of the
reader. The literature on statistical tests for hypotheses is very large. This chapter
provides an introductory overview that focuses only on the issues most directly
relevant to learning, evaluating, and comparing hypotheses.

5.2 ESTIMATING HYPOTHESIS ACCURACY
When evaluating a learned hypothesis we are most often interested in estimating
the accuracy with which it will classify future instances. At the same time, we
would like to know the probable error in this accuracy estimate (i.e., what error
bars to associate with this estimate).

Throughout this chapter we consider the following setting for the learning
problem. There is some space of possible instances X (e.g., the set of all people)
over which various target functions may be defined (e.g., people who plan to
purchase new skis this year). We assume that different instances in X may be en-
countered with different frequencies. A convenient way to model this is to assume
there is some unknown probability distribution D that defines the probability of
encountering each instance in X (e-g., 23 might assign a higher probability to en-
countering 19-year-old people than 109-year-old people). Notice 23 says nothing

about whether x is a positive or negative example; it only detennines the proba-
bility that x will be encountered. The learning task is to learn the target concept
or target function f by considering a space H of possible hypotheses. Training
examples of the target function f are provided to the learner by a trainer who
draws each instance independently, according to the distribution D, and who then
forwards the instance x along with its correct target value f (x) to the learner.

To illustrate, consider learning the target function "people who plan to pur-
chase new skis this year," given a sample of training data collected by surveying
people as they arrive at a ski resort. In this case the instance space X is the space
of all people, who might be described by attributes such as their age, occupation,
how many times they skied last year, etc. The distribution D specifies for each
person x the probability that x will be encountered as the next person arriving at
the ski resort. The target function f : X + { O , 1) classifies each person according
to whether or not they plan to purchase skis this year.

Within this general setting we are interested in the following two questions:

1. Given a hypothesis h and a data sample containing n examples drawn at
random according to the distribution D, what is the best estimate of the
accuracy of h over future instances drawn from the same distribution?

2. What is the probable error in this accuracy estimate?

5.2.1 Sample Error and True Error
To answer these questions, we need to distinguish carefully between two notions
of accuracy or, equivalently, error. One is the error rate of the hypothesis over the
sample of data that is available. The other is the error rate of the hypothesis over
the entire unknown distribution D of examples. We will call these the sample
error and the true error respectively.

The sample error of a hypothesis with respect to some sample S of instances
drawn from X is the fraction of S that it misclassifies:

Definition: The sample error (denoted errors(h)) of hypothesis h with respect to
target function f and data sample S is

Where n is the number of examples in S, and the quantity S(f (x) , h (x)) is 1 if
f (x) # h(x) , and 0 otherwise.

The true error of a hypothesis is the probability that it will misclassify a
single randomly drawn instance from the distribution D.

Definition: The true error (denoted e r r o r v (h)) of hypothesis h with respect to target
function f and distribution D, is the probability that h will misclassify an instance
drawn at random according to D.

errorv (h) = Pr [f (x) # h(x)]
X E D

Here the notation Pr denotes that the probability is taken over the instance
XGV

distribution V.
What we usually wish to know is the true error errorv(h) of the hypothesis,

because this is the error we can expect when applying the hypothesis to future
examples. All we can measure, however, is the sample error errors(h) of the
hypothesis for the data sample S that we happen to have in hand. The main
question considered in this section is "How good an estimate of errorD(h) is
provided by errors (h)?"

5.2.2 Confidence Intervals for Discrete-Valued Hypotheses
Here we give an answer to the question "How good an estimate of errorv(h) is
provided by errors(h)?' for the case in which h is a discrete-valued hypothesis.
More specifically, suppose we wish to estimate the true error for some discrete-
valued hypothesis h, based on its observed sample error over a sample S, where

0 the sample S contains n examples drawn independent of one another, and
independent of h, according to the probability distribution V

0 n z 3 0
0 hypothesis h commits r errors over these n examples (i.e., errors(h) = rln).

Under these conditions, statistical theory allows us to make the following asser-
tions:

1. Given no other information, the most probable value of errorD(h) is errors(h)
2. With approximately 95% probability, the true error errorv(h) lies in the

interval
errors(h)(l - errors (h))

errors(h) f 1.96 7
To illustrate, suppose the data sample S contains n = 40 examples and that
hypothesis h commits r = 12 errors over this data. In this case, the sample error
errors(h) = 12/40 = .30. Given no other information, the best estimate of the true
error errorD(h) is the observed sample error .30. However, we do not expect this
to be a perfect estimate of the true error. If we were to collect a second sample
S' containing 40 new randomly drawn examples, we might expect the sample
error errors,(h) to vary slightly from the sample error errors(h). We expect a
difference due to the random differences in the makeup of S and S'. In fact, if
we repeated this experiment over and over, each time drawing a new sample
S, containing 40 new examples, we would find that for approximately 95% of
these experiments, the calculated interval would contain the true error. For this
reason, we call this interval the 95% confidence interval estimate for errorv(h).
In the current example, where r = 12 and n = 40, the 95% confidence interval is,
according to the above expression, 0.30 f (1.96 - .07) = 0.30 f .14.

ConfidencelevelN%: 50% 68% 80% 90% 95% 98% 99%
Constant ZN: 0.67 1.00 1.28 1.64 1.96 2.33 2.58

TABLE 5.1
Values of z~ for two-sided N% confidence intervals.

The above expression for the 95% confidence interval can be generalized to
any desired confidence level. The constant 1.96 is used in case we desire a 95%
confidence interval. A different constant, ZN, is used to calculate the N% confi-
dence interval. The general expression for approximate N% confidence intervals
for errorv(h) is

where the constant ZN is chosen depending on the desired confidence level, using
the values of z~ given in Table 5.1.

Thus, just as we could calculate the 95% confidence interval for errorv(h) to
be 0.305 (1.96. .07) (when r = 12, n = 40), we can calculate the 68% confidence
interval in this case to be 0.30 f (1.0 - .07). Note it makes intuitive sense that the
68% confidence interval is smaller than the 95% confidence interval, because we
have reduced the probability with which we demand that errorv(h) fall into the
interval.

Equation (5.1) describes how to calculate the confidence intervals, or error
bars, for estimates of errorv(h) that are based on errors(h). In using this ex-
pression, it is important to keep in mind that this applies only to discrete-valued
hypotheses, that it assumes the sample S is drawn at random using the same
distribution from which future data will be drawn, and that it assumes the data
is independent of the hypothesis being tested. We should also keep in mind that
the expression provides only an approximate confidence interval, though the ap-
proximation is quite good when the sample contains at least 30 examples, and
errors(h) is not too close to 0 or 1 . A more accurate rule of thumb is that the
above approximation works well when

Above we summarized the procedure for calculating confidence intervals for
discrete-valued hypotheses. The following section presents the underlying statis-
tical justification for this procedure.

5.3 BASICS OF SAMPLING THEORY
This section introduces basic notions from statistics and sampling theory, in-
cluding probability distributions, expected value, variance, Binomial and Normal
distributions, and two-sided and one-sided intervals. A basic familiarity with these

a A random variable can be viewed as the name of an experiment with a probabilistic outcome. Its
value is the outcome of the experiment.
A probability distribution for a random variable Y specifies the probability Pr(Y = yi) that Y will
take on the value yi, for each possible value yi.
The expected value, or mean, of a random variable Y is E [Y] = Ci yi Pr(Y = yi). The symbol
p) ~ is commonly used to represent E[Y].
The variance of a random variable is Var(Y) = E[(Y - p ~) ~] . The variance characterizes the
width or dispersion of the distribution about its mean.

a The standard deviation of Y is JVar(Y). The symbol uy is often used used to represent the
standard deviation of Y .
The Binomial distribution gives the probability of observing r heads in a series of n independent
coin tosses, if the probability of heads in a single toss is p.

a The Normal distribution is a bell-shaped probability distribution that covers many natural
phenomena.
The Central Limit Theorem is a theorem stating that the sum of a large number of independent,
identically distributed random variables approximately follows a Normal distribution.
An estimator is a random variable Y used to estimate some parameter p of an underlying popu-
lation.

a The estimation bias of Y as an estimator for p is the quantity (E [Y] - p). An unbiased estimator
is one for which the bias is zero.

a A N% conjidence interval estimate for parameter p is an interval that includes p with probabil-
ity N%.

TABLE 5.2 ,
Basic definitions and facts from statistics.

concepts is important to understanding how to evaluate hypotheses and learning
algorithms. Even more important, these same notions provide an important con-
ceptual framework for understanding machine learning issues such as overfitting
and the relationship between successful generalization and the number of training
examples considered. The reader who is already familiar with these notions may
skip or skim this section without loss of continuity. The key concepts introduced
in this section are summarized in Table 5.2.

5.3.1 Error Estimation and Estimating Binomial Proportions
Precisely how does the deviation between sample error and true error depend
on the size of the data sample? This question is an instance of a well-studied
problem in statistics: the problem of estimating the proportion of a population that
exhibits some property, given the observed proportion over some random sample
of the population. In our case, the property of interest is that h misclassifies the
example.

The key to answering this question is to note that when we measure the
sample error we are performing an experiment with a random outcome. We first
collect a random sample S of n independently drawn instances from the distribu-
tion D, and then measure the sample error errors(h). As noted in the previous

section, if we were to repeat this experiment many times, each time drawing a
different random sample Si of size n, we would expect to observe different values
for the various errors,(h), depending on random differences in the makeup of
the various Si. We say in such cases that errors, (h), the outcome of the ith such
experiment, is a random variable. In general, one can think of a random variable
as the name of an experiment with a random outcome. The value of the random
variable is the observed outcome of the random experiment.

Imagine that we were to run k such random experiments, measuring the ran-
dom variables errors, (h), errors, (h) . . . errors, (h). Imagine further that we then
plotted a histogram displaying the frequency with which we observed each possi-
ble error value. As we allowed k to grow, the histogram would approach the form
of the distribution shown in Table 5.3. This table describes a particular probability
distribution called the Binomial distribution.

Binomial dishibution for n = 40, p =0.3
0.14
0.12
0.1

0.08
'F 0.06

0.04
0.02

0
0 5 10 15 20 25 30 35 40

A Binomial distribution gives the probability of observing r heads in a sample of n independent
coin tosses, when the probability of heads on a single coin toss is p. It is defined by the probability
function

n ! P (r) = - p r (l - p)"-'
r ! (n - r) !

If the random variable X follows a Binomial distribution, then:
0 The probability Pr(X = r) that X will take on the value r is given by P (r)
0 The expected, or mean value of X, E[X], is

0 The variance of X, Var(X) , is
Var (X) = n p (1 - p)

0 The standard deviation of X, ax, is

For sufficiently large values of n the Binomial distribution is closely approximated by a Normal
distribution (see Table 5.4) with the same mean and variance. Most statisticians recommend using
the Normal approximation only when n p (1 - p) 2 5.

TABLE 53
The Binomial distribution.

5.3.2 The Binomial Distribution
A good way to understand the Binomial distribution is to consider the following
problem. You are given a worn and bent coin and asked to estimate the probability
that the coin will turn up heads when tossed. Let us call this unknown probability
of heads p. You toss the coin n times and record the number of times r that it
turns up heads. A reasonable estimate of p is rln. Note that if the experiment
were rerun, generating a new set of n coin tosses, we might expect the number
of heads r to vary somewhat from the value measured in the first experiment,
yielding a somewhat different estimate for p. The Binomial distribution describes
for each possible value of r (i.e., from 0 to n), the probability of observing exactly
r heads given a sample of n independent tosses of a coin whose true probability
of heads is p.

Interestingly, estimating p from a random sample of coin tosses is equivalent
to estimating errorv(h) from testing h on a random sample of instances. A single
toss of the coin corresponds to drawing a single random instance from 23 and
determining whether it is misclassified by h. The probability p that a single random
coin toss will turn up heads corresponds to the probability that a single instance
drawn at random will be misclassified (i.e., p corresponds to errorv(h)). The
number r of heads observed over a sample of n coin tosses corresponds to the
number of misclassifications observed over n randomly drawn instances. Thus rln
corresponds to errors(h). The problem of estimating p for coins is identical to
the problem of estimating errorv(h) for hypotheses. The Binomial distribution
gives the general form of the probability distribution for the random variable r,
whether it represents the number of heads in n coin tosses or the number of
hypothesis errors in a sample of n examples. The detailed form of the Binomial
distribution depends on the specific sample size n and the specific probability p
or errorv(h).

The general setting to which the Binomial distribution applies is:

1. There is a base, or underlying, experiment (e.g., toss of the coin) whose
outcome can be described by a random variable, say Y . The random variable
Y can take on two possible values (e.g., Y = 1 if heads, Y = 0 if tails).

2. The probability that Y = 1 on any single trial of the underlying experiment
is given by some constant p, independent of the outcome of any other
experiment. The probability that Y = 0 is therefore (1 - p). Typically, p is
not known in advance, and the problem is to estimate it.

3. A series of n independent trials of the underlying experiment is performed
(e.g., n independent coin tosses), producing the sequence of independent,
identically distributed random variables Y l , Yz, . . . , Yn. Let R denote the
number of trials for which Yi = 1 in this series of n experiments

4. The probability that the random variable R will take on a specific value r
(e.g., the probability of observing exactly r heads) is given by the Binomial
distribution

n! Pr(R = r) = pr(l - p)"-' r!(n - r) !

A plot of this probability distribution is shown in Table 5.3.

The Binomial distribution characterizes the probability of observing r heads from
n coin flip experiments, as well as the probability of observing r errors in a data
sample containing n randomly drawn instances.

5.3.3 Mean and Variance
Two properties of a random variable that are often of interest are its expected
value (also called its mean value) and its variance. The expected value is_the
average of the values taken on by repeatedly sampling the random variable. More
precisely

Definition: Consider a random variable Y that takes on the possible values yl, . . . yn.
The expected value of Y , E[Y] , is

For example, if Y takes on the value 1 with probability .7 and the value 2 with
probability .3, then its expected value is (1 .0.7 + 2.0.3 = 1.3). In case the random
variable Y is governed by a Binomial distribution, then it can be shown that

E [Y] = np (5.4)

where n and p are the parameters of the Binomial distribution defined in Equa-
tion (5.2).

A second property, the variance, captures the "width or "spread" of the
probability distribution; that is, it captures how far the random variable is expected
to vary from its mean value.

Definition: The variance of a random variable Y , Var [Y] , is

Var[Y] = E[(Y - E [Y]) ~] (5.5)

The variance describes the expected squared error in using a single obser-
vation of Y to estimate its mean E [Y] . The square root of the variance is called
the standard deviation of Y , denoted oy .

Definition: The standard deviation of a random variable Y , u y , is

In case the random variable Y is governed by a Binomial distribution, then the
variance and standard deviation are given by

5.3.4 Estimators, Bias, and Variance
Now that we have shown that the random variable errors(h) obeys a Binomial
distribution, we return to our primary question: What is the likely difference
between errors(h) and the true error errorv(h)?

Let us describe errors(h) and errorv(h) using the terms in Equation (5.2)
defining the Binomial distribution. We then have

where n is the number of instances in the sample S, r is the number of instances
from S misclassified by h, and p is the probability of misclassifying a single
instance drawn from 23.

Statisticians call errors(h) an estimator for the true error errorv(h). In
general, an estimator is any random variable used to estimate some parameter of
the underlying population from which the sample is drawn. An obvious question
to ask about any estimator is whether on average it gives the right estimate. We
define the estimation bias to be the difference between the expected value of the
estimator and the true value of the parameter.

Definition: The estimation bias of an estimator Y for an arbitrary parameter p is

If the estimation bias is zero, we say that Y is an unbiased estimator for p. Notice
this will be the case if the average of many random values of Y generated by
repeated random experiments (i.e., E[Y]) converges toward p.

Is errors(h) an unbiased estimator for errorv(h)? Yes, because for a Bi-
nomial distribution the expected value of r is equal to np (Equation r5.41). It
follows, given that n is a constant, that the expected value of rln is p.

Two quick remarks are in order regarding the estimation bias. First, when
we mentioned at the beginning of this chapter that testing the hypothesis on the
training examples provides an optimistically biased estimate of hypothesis error,
it is exactly this notion of estimation bias to which we were referring. In order for
errors(h) to give an unbiased estimate of errorv(h), the hypothesis h and sample
S must be chosen independently. Second, this notion of estimation bias should
not be confused with the inductive bias of a learner introduced in Chapter 2. The

estimation bias is a numerical quantity, whereas the inductive bias is a set of
assertions.

A second important property of any estimator is its variance. Given a choice
among alternative unbiased estimators, it makes sense to choose the one with
least variance. By our definition of variance, this choice will yield the smallest
expected squared error between the estimate and the true value of the parameter.

To illustrate these concepts, suppose we test a hypothesis and find that it
commits r = 12 errors on a sample of n = 40 randomly drawn test examples.
Then an unbiased estimate for errorv(h) is given by errors(h) = rln = 0.3.
The variance in this estimate arises completely from the variance in r, because
n is a constant. Because r is Binomially distributed, its variance is given by
Equation (5.7) as np(1 - p). Unfortunately p is unknown, but we can substitute
our estimate rln for p. This yields an estimated variance in r of 4 0 . 0.3(1 -
0.3) = 8.4, or a corresponding standard deviation of a ;j: 2.9. his implies
that the standard deviation in errors(h) = rln is approximately 2.9140 = .07. To
summarize, errors(h) in this case is observed to be 0.30, with a standard deviation
of approximately 0.07. (See Exercise 5.1 .)

In general, given r errors in a sample of n independently drawn test exam-
ples, the standard deviation for errors(h) is given by

which can be approximated by substituting rln = errors(h) for p

5.3.5 Confidence Intervals
One common way to describe the uncertainty associated with an estimate is to
give an interval within which the true value is expected to fall, along with the
probability with which it is expected to fall into this interval. Such estimates are
called conjdence interval estimates.

Definition: An N% confidence interval for some parameter p is an interval that is
expected with probability N% to contain p .

For example, if we observe r = 12 errors in a sample of n = 40 independently
drawn examples, we can say with approximately 95% probability that the interval
0.30 f 0.14 contains the true error errorv(h).

How can we derive confidence intervals for errorv(h)? The answer lies in
the fact that we know the Binomial probability distribution governing the estima-
tor errors(h). The mean value of this distribution is errorV(h), and the standard
deviation is given by Equation (5.9). Therefore, to derive a 95% confidence in-
terval, we need only find the interval centered around the mean value errorD(h),

which is wide enough to contain 95% of the total probability under this distribu-
tion. This provides an interval surrounding errorv(h) into which errors(h) must
fall 95% of the time. Equivalently, it provides the size of the interval surrounding
errordh) into which errorv(h) must fall 95% of the time.

For a given value of N how can we find the size of the interval that con-
tains N% of the probability mass? Unfortunately, for the Binomial distribution
this calculation can be quite tedious. Fortunately, however, an easily calculated
and very good approximation can be found in most cases, based on the fact that
for sufficiently large sample sizes the Binomial distribution can be closely ap-
proximated by the Normal distribution. The Normal distribution, summarized in
Table 5.4, is perhaps the most well-studied probability distribution in statistics.
As illustrated in Table 5.4, it is a bell-shaped distribution fully specified by its

Normal dismbution with mean 0. standard deviation I

3 -2 -1 0 1 2 3

A Normal distribution (also called a Gaussian distribution) is a bell-shaped distribution defined by
the probability density function

A Normal distribution is fully determined by two parameters in the above formula: p and a.

If the random variable X follows a normal distribution, then:
0 The probability that X will fall into the interval (a, 6) is given by

The expected, or mean value of X, E [X] , is

The variance of X, Var(X) , is
V a r (X) = a2

0 The standard deviation of X, ax, is
ax = a

The Central Limit Theorem (Section 5.4.1) states that the sum of a large number of independent,
identically distributed random variables follows a distribution that is approximately Normal.

TABLE 5.4
The Normal or Gaussian distribution.

mean p and standard deviation a. For large n, any Binomial distribution is very
closely approximated by a Normal distribution with the same mean and variance.

One reason that we prefer to work with the Normal distribution is that most
statistics references give tables specifying the size of the interval about the mean
that contains N% of the probability mass under the Normal distribution. This is
precisely the information needed to calculate our N% confidence interval. In fact,
Table 5.1 is such a table. The constant ZN given in Table 5.1 defines the width
of the smallest interval about the mean that includes N% of the total probability
mass under the bell-shaped Normal distribution. More precisely, ZN gives half the
width of the interval (i.e., the distance from the mean in either direction) measured
in standard deviations. Figure 5.l(a) illustrates such an interval for z.80.

To summarize, if a random variable Y obeys a Normal distribution with
mean p and standard deviation a , then the measured random value y of Y will
fall into the following interval N% of the time

Equivalently, the mean p will fall into the following interval N% of the time

We can easily combine this fact with earlier facts to derive the general
expression for N% confidence intervals for discrete-valued hypotheses given in
Equation (5.1). First, we know that errors(h) follows a Binomial distribution with
mean value e r r o r ~ (h) and standard deviation as given in Equation (5.9). Second,
we know that for sufficiently large sample size n, this Binomial distribution is
well approximated by a Normal distribution. Third, Equation (5.1 1) tells us how
to find the N% confidence interval for estimating the mean value of a Normal
distribution. Therefore, substituting the mean and standard deviation of errors(h)
into Equation (5.1 1) yields the expression from Equation (5.1) for N% confidence

FIGURE 5.1
A Normal distribution with mean 0, standard deviation 1. (a) With 80% confidence, the value of
the random variable will lie in the two-sided interval [-1.28,1.28]. Note 2.80 = 1.28. With 10%
confidence it will lie to the right of this interval, and with 10% confidence it will lie to the left.
(b) With 90% confidence, it will lie in the one-sided interval [-oo, 1.281.

intervals for discrete-valued hypotheses

J errors(h)(l - errors(h))
errors(h) z t ZN n

Recall that two approximations were involved in deriving this expression, namely:

1. in estimating the standard deviation a of errors(h), we have approximated
errorv(h) by errors(h) [i.e., in going from Equation (5.8) to (5.9)], and

2. the Binomial distribution has been approximated by the Normal distribution.

The common rule of thumb in statistics is that these two approximations are very
good as long as n 2 30, or when np(1- p) 2 5. For smaller values of n it is wise
to use a table giving exact values for the Binomial distribution.

5.3.6 Two-sided and One-sided Bounds
Notice that the above confidence interval is a two-sided bound; that is, it bounds
the estimated quantity from above and from below. In some cases, we will be
interested only in a one-sided bound. For example, we might be interested in the
question "What is the probability that errorz,(h) is at most U?' This kind of one-
sided question is natural when we are only interested in bounding the maximum
error of h and do not mind if the true error is much smaller than estimated.

There is an easy modification to the above procedure for finding such one-
sided error bounds. It follows from the fact that the Normal distribution is syrnrnet-
ric about its mean. Because of this fact, any two-sided confidence interval based on
a Normal distribution can be converted to a corresponding one-sided interval with
twice the confidence (see Figure 5.l(b)). That is, a 100(1- a)% confidence inter-
val with lower bound L and upper bound U implies a 100(1- a/2)% confidence
interval with lower bound L and no upper bound. It also implies a 100(1 -a/2)%
confidence interval with upper bound U and no lower bound. Here a corresponds
to the probability that the correct value lies outside the stated interval. In other
words, a is the probability that the value will fall into the unshaded region in
Figure 5.l(a), and a/2 is the probability that it will fall into the unshaded region
in Figure 5.l(b).

To illustrate, consider again the example in which h commits r = 12 errors
over a sample of n = 40 independently drawn examples. As discussed above,
this leads to a (two-sided) 95% confidence interval of 0.30 f 0.14. In this case,
100(1 - a) = 95%, so a! = 0.05. Thus, we can apply the above rule to say with
100(1 - a/2) = 97.5% confidence that errorv(h) is at most 0.30 + 0.14 = 0.44,
making no assertion about the lower bound on errorv(h). Thus, we have a one-
sided error bound on errorv(h) with double the confidence that we had in the
corresponding two-sided bound (see Exercise 5.3).

142 MACHINE LEARNING

5.4 A GENERAL APPROACH FOR DERIVING CONFIDENCE
INTERVALS
The previous section described in detail how to derive confidence interval es-
timates for one particular case: estimating errorv(h) for a discrete-valued hy-
pothesis h, based on a sample of n independently drawn instances. The approach
described there illustrates a general approach followed in many estima6on prob-
lems. In particular, we can see this as a problem of estimating the mean (expected
value) of a population based on the mean of a randomly drawn sample of size n.
The general process includes the following steps:

1. Identify the underlying population parameter p to be estimated, for example,
errorv(h).

2. Define the estimator Y (e.g., errors(h)). It is desirable to choose a minimum-
variance, unbiased estimator.

3. Determine the probability distribution Vy that governs the estimator Y, in-
cluding its mean and variance.

4. Determine the N% confidence interval by finding thresholds L and U such
that N% of the mass in the probability distribution V y falls between L and U.

In later sections of this chapter we apply this general approach to sev-
eral other estimation problems common in machine learning. First, however, let
us discuss a fundamental result from estimation theory called the Central Limit
Theorem.

5.4.1 Central Limit Theorem
One essential fact that simplifies attempts to derive confidence intervals is the
Central Limit Theorem. Consider again our general setting, in which we observe
the values of n independently drawn random variables Yl . . . Yn that obey the same
unknown underlying probability distribution (e.g., n tosses of the same coin). Let
p denote the mean of the unknown distribution governing each of the Yi and let
a denote the standard deviation. We say that these variables Yi are independent,
identically distributed random variables, because they describe independent exper-
iments, each obeying the same underlying probability distribution. In an attempt
to estimate the mean p of the distribution governing the Yi, we calculate the sam-
ple mean = '& Yi (e.g., the fraction of heads among the n coin tosses).
The Central Limit Theorem states that the probability distribution governing Fn
approaches a Normal distribution as n + co, regardless of the distribution that
governs the underlying random variables Yi. Furthermore, the mean of the dis-
tribution governing Yn approaches p and the standard deviation approaches k.
More precisely,

Theorem 5.1. Central Limit Theorem. Consider a set of independent, identically
distributed random variables Yl . . . Y, governed by an arbitrary probability distribu-
tion with mean p and finite variance a2. Define the sample mean, = xy=, Yi.

Then as n + co, the distribution governing

5
approaches a Normal distribution, with zero mean and standard deviation equal to 1.

This is a quite surprising fact, because it states that we know the form of
the distribution that governs the sample mean ? even when we do not know the
form of the underlying distribution that governs the individual Yi that are being
observed! Furthermore, the Central Limit Theorem describes how the mean and
variance of Y can be used to determine the mean and variance of the individual Yi .

The Central Limit Theorem is a very useful fact, because it implies that
whenever we define an estimator that is the mean of some sample (e.g., errors(h)
is the mean error), the distribution governing this estimator can be approximated
by a Normal distribution for sufficiently large n. If we also know the variance
for this (approximately) Normal distribution, then we can use Equation (5.1 1) to
compute confidence intervals. A common rule of thumb is that we can use the
Normal approximation when n 2 30. Recall that in the preceding section we used
such a Normal distribution to approximate the Binomial distribution that more
precisely describes errors (h) .

5.5 DIFFERENCE IN ERROR OF TWO HYPOTHESES
Consider the case where we have two hypotheses hl and h2 for some discrete-
valued target function. Hypothesis hl has been tested on a samj4e S1 containing
nl randomly drawn examples, and ha has been tested on an indi:pendent sample
S2 containing n2 examples drawn from the same distribution. Suppose we wish
to estimate the difference d between the true errors of these two hypotheses.

We will use the generic four-step procedure described at the beginning of
Section 5.4 to derive a confidence interval estimate for d. Having identified d as
the parameter to be estimated, we next define an estimator. The obvious choice
for an estimator in this case is the difference between the sample errors, which
we denote by 2 ,.

d = errors, (h l) - errors, (h2)

Although we will not prove it here, it can be shown that 2 gives an unbiased
estimate of d; that is E[C?] = d.

What is the probability distribution governing the random variable 2? From
earlier sections, we know that for large nl and n2 (e.g., both 2 30), both errors, (h l)
and error& (hz) follow distributions that are approximately Normal. Because the
difference of two Normal distributions is also a Normal distribution, 2 will also

144 MACHINE LEARNING
r

follow a distribution that is approximately Normal, with mean d. It can also
be shown that the variance of this distribution is the sum of the variances of
errors, (h l) and errors2(h2). Using Equation (5.9) to obtain the approximate vari-
ance of each of these distributions, we have

errorS, (h l) (l - errors, (h l)) errors2 (h2)(1 - errors,(h2))
0 2 , ci + (5.12)

n 1 n2
Now that we have determined the probability distribution that governs the esti-
mator 2, it is straightforward to derive confidence intervals that characterize the
likely error in employing 2 to estimate d. For a random variable 2 obeying a
Normal distribution with mean d and variance a2, the N% confidence interval
estimate for d is 2 f z ~ a . Using the approximate variance a; given above, this
approximate N% confidence interval estimate for d is

J errors, (h l) (l - errors, (h 1)) errors2 (h2)(1 - errors2(h2)) d f z ~ + (5.13)
nl n2

where zN is the same constant described in Table 5.1. The above expression gives
the general two-sided confidence interval for estimating the difference between
errors of two hypotheses. In some situations we might be interested in one-sided
bounds--either bounding the largest possible difference in errors or the smallest,
with some confidence level. One-sided confidence intervals can be obtained by
modifying the above expression as described in Section 5.3.6.

Although the above analysis considers the case in which hl and h2 are tested
on independent data samples, it is often acceptable to use the confidence interval
seen in Equation (5.13) in the setting where h 1 and h2 are tested on a single sample
S (where S is still independent of hl and h2). In this later case, we redefine 2 as

The variance in this new 2 will usually be smaller than the variance given by
Equation (5.12), when we set S1 and S2 to S. This is because using a single
sample S eliminates the variance due to random differences in the compositions
of S1 and S2. In this case, the confidence interval given by Equation (5.13) will
generally be an overly conservative, but still correct, interval.

5.5.1 Hypothesis Testing
In some cases we are interested in the probability that some specific conjecture is
true, rather than in confidence intervals for some parameter. Suppose, for example,
that we are interested in the question "what is the probability that errorv(h1) >
errorv(h2)?' Following the setting in the previous section, suppose we measure
the sample errors for hl and h2 using two independent samples S1 and S2 of size
100 and find that errors, (h l) = .30 and errors2(h2) = -20, hence the observed
difference is 2 = . l o . Of course, due to random variation in the data sample,

we might observe this difference in the sample errors even when errorv(hl) 5
errorv(h2). What is the probability that errorv(hl) > errorv(h2), given the
observed difference in sample errors 2 = .10 in this case? Equivalently, what is
the probability that d > 0, given that we observed 2 = .lo?

Note the probability Pr(d > 0) is equal to the probability that 2 has not
overestimated d by more than .lo. Put another way, this is the probability that 2
falls into the one-sided interval 2 < d + .lo. Since d is the mean of the distribution
governing 2, we can equivalently express this one-sided interval as 2 < p2 + .lo.

To summarize, the probability Pr(d > 0) equals the probability that 2 falls
into the one-sided interval 2 < pa + .lo. Since we already calculated the ap-
proximate distribution governing 2 in the previous section, we can determine the
probability that 2 falls into this one-sided interval by calculating the probability
mass of the 2 distribution within this interval.

Let us begin this calculation by re-expressing the interval 2 < pi + .10 in
terms of the number of standard deviations it allows deviating from the mean.
Using Equation (5.12) we find that 02 FZ .061, so we can re-express the interval
as approximately

What is the confidence level associated with this one-sided interval for a Normal
distribution? Consulting Table 5.1, we find that 1.64 standard deviations about the
mean corresponds to a two-sided interval with confidence level 90%. Therefore,
the one-sided interval will have an associated confidence level of 95%.

Therefore, given the observed 2 = .lo, the probability that errorv(h1) >
errorv(h2) is approximately .95. In the terminology of the statistics literature, we
say that we accept the hypothesis that "errorv(hl) > errorv(h2)" with confidence
0.95. Alternatively, we may state that we reject the opposite hypothesis (often
called the null hypothesis) at a (1 - 0.95) = .05 level of significance.

5.6 COMPARING LEARNING ALGORITHMS
Often we are interested in comparing the performance of two learning algorithms
L A and L B , rather than two specific hypotheses. What is an appropriate test for
comparing learning algorithms, and how can we determine whether an observed
difference between the algorithms is statistically significant? Although there is
active debate within the machine-learning research community regarding the best
method for comparison, we present here one reasonable approach. A discussion
of alternative methods is given by Dietterich (1996).

As usual, we begin by specifying the parameter we wish to estimate. Suppose
we wish to determine which of LA and LB is the better learning method on average
for learning some particular target function f . A reasonable way to define "on
average" is to consider the relative performance of these two algorithms averaged
over all the training sets of size n that might be drawn from the underlying
instance distribution V. In other words, we wish to estimate the expected value

of the difference in their errors

where L(S) denotes the hypothesis output by learning method L when given
the sample S of training data and where the subscript S c V indicates that
the expected value is taken over samples S drawn according to the underlying
instance distribution V. The above expression describes the expected value of the
difference in errors between learning methods LA and L B.

Of course in practice we have only a limited sample Do of data when
comparing learning methods. In such cases, one obvious approach to estimating
the above quantity is to divide Do into a training set So and a disjoint test set To.
The training data can be used to train both LA and LB, and the test data can be
used to compare the accuracy of the two learned hypotheses. In other words, we
measure the quantity

Notice two key differences between this estimator and the quantity in Equa-
tion (5.14). First, we are using errorTo(h) to approximate errorv(h). Second, we
are only measuring the difference in errors for one training set So rather than tak-
ing the expected value of this difference over all samples S that might be drawn
from the distribution 2).

One way to improve on the estimator given by Equation (5.15) is to repeat-
edly partition the data Do into disjoint training and test sets and to take the mean
of the test set errors for these different experiments. This leads to the procedure
shown in Table 5.5 for estimating the difference between errors of two learning
methods, based on a fixed sample Do of available data. This procedure first parti-
tions the data into k disjoint subsets of equal size, where this size is at least 30. It
then trains and tests the learning algorithms k times, using each of the k subsets
in turn as the test set, and using all remaining data as the training set. In this
way, the learning algorithms are tested on k independent test sets, 'and the mean
difference in errors 8 is returned as an estimate of the difference between the two
learning algorithms.

The quantity 8 returned by the procedure of Table 5.5 can be taken as an
estimate of the desired quantity from Equation 5.14. More appropriately, we can
view 8 as an estimate of the quantity

where S represents a random sample of size ID01 drawn uniformly from Do.
The only difference between this expression and our original expression in Equa-
tion (5.14) is that this new expression takes the expected value over subsets of
the available data Do, rather than over subsets drawn from the full instance dis-
tribution 2).

1. Partition the available data Do into k disjoint subsets T I , T2, . . . , Tk of equal size, where this size
is at least 30.

2. For i from 1 to k, do
use Ti for the test set, and the remaining data for training set Si

0 Si c {Do - Ti}
hA C LA(Si)
h~ + L ~ (s i)

0 Si t errorq (hA) - errorz (h B)
3. Return the value 6 , where

TABLE 5.5
A procedure to estimate the difference in error between two learning methods LA and LB. Approxi-
mate confidence intervals for this estimate are given in the text.

The approximate N% confidence interval for estimating the quantity in Equa-
tion (5.16) using 8 is given by

where t N , k - l is a constant that plays a role analogous to that of ZN in our ear-
lier confidence interval expressions, and where s,- is an estimate of the standard
deviation of the distribution governing 8. In particular, sg is defined as

Notice the constant t ~ , k - l in Equation (5.17) has two subscripts. The first
specifies the desired confidence level, as it did for our earlier constant Z N . The
second parameter, called the number of degrees of freedom and usually denoted by
v , is related to the number of independent random events that go into producing
the value for the random variable 8. In the current setting, the number of degrees
of freedom is k - 1. Selected values for the parameter t are given in Table 5.6.
Notice that as k + oo, the value of t ~ , k - l approaches the constant Z N .

Note the procedure described here for comparing two learning methods in-
volves testing the two learned hypotheses on identical test sets. This contrasts with
the method described in Section 5.5 for comparing hypotheses that have been eval-
uated using two independent test sets. Tests where the hypotheses are evaluated
over identical samples are called paired tests. Paired tests typically produce tighter
confidence intervals because any differences in observed errors in a paired test
are due to differences between the hypotheses. In contrast, when the hypotheses
are tested on separate data samples, differences in the two sample errors might be
partially attributable to differences in the makeup of the two samples.

Confidence level N
90% 95% 98% 99%

TABLE 5.6
Values oft^," for two-sided confidence intervals. As v + w, t ~ , " approaches ZN.

5.6.1 Paired t Tests
Above we described one procedure for comparing two learning methods given a
fixed set of data. This section discusses the statistical justification for this proce-
dure, and for the confidence interval defined by Equations (5.17) and (5.18). It
can be skipped or skimmed on a first reading without loss of continuity.

The best way to understand the justification for the confidence interval es-
timate given by Equation (5.17) is to consider the following estimation problem:

0

0

a

This

We are given the observed values of a set of independent, identically dis-
tributed random variables YI, Y2, . . . , Yk.
We wish to estimate the mean p of the probability distribution governing
these Yi.
The estimator we will use is the sample mean Y

problem of estimating the distribution mean p based on the sample mean
Y is quite general. For example, it covers the problem discussed earlier of using
errors(h) to estimate errorv(h). (In that problem, the Yi are 1 or 0 to indicate
whether h commits an error on an individual example from S, and errorv(h) is the
mean p of the underlying distribution.) The t test, described by Equations (5.17)
and (5.18), applies to a special case of this problem-the case in which the
individual Yi follow a Normal distribution.

Now consider the following idealization of the method in Table 5.5 for com-
paring learning methods. Assume that instead of having a fixed sample of data Do,
we can request new training examples drawn according to the underlying instance
distribution. In particular, in this idealized method we modify the procedure of
Table 5.5 so that on each iteration through the loop it generates a new random
training set Si and new random test set Ti by drawing from this underlying instance
distribution instead of drawing from the fixed sample Do. This idealized method

perfectly fits the form of the above estimation problem. In particular, the Si mea-
sured by the procedure now correspond to the independent, identically distributed
random variables Yi. The mean p of their distribution corresponds to the expected
difference in error between the two learning methods [i.e., Equation (5.14)]. The
sample mean Y is the quantity 6 computed by this idealized version of the method.
We wish to answer the question "how good an estimate of p is provided by s?'

First, note that the size of the test sets has been chosen to contain at least
30 examples. Because of this, the individual Si will each follow an approximately
Normal distribution (due to the Central Limit Theorem). Hence, we have a special
case in which the Yi are governed by an approximately Normal distribution. It
can be shown in general that when the individual Yi each follow a Normal dis-
tribution, then the sample mean Y follows a Normal distribution as well. Given
that Y is Normally distributed, we might consider using the earlier expression for
confidence intervals (Equation [5.11]) that applies to estimators governed by Nor-
mal distributions. Unfortunately, that equation requires that we know the standard
deviation of this distribution, which we do not.

The t test applies to precisely these situations, in which the task is to esti-
mate the sample mean of a collection of independent, identically and Normally
distributed random variables. In this case, we can use the confidence interval given
by Equations (5.17) and (5.18), which can be restated using our current notation as

where sp is the estimated standard deviation of the sample mean

and where tN,k-l is a constant analogous to our earlier ZN. In fact, the constant
t~ ,k- l characterizes the area under a probability distribution known as the t distri-
bution, just as the constant ZN characterizes the area under a Normal distribution.
The t distribution is a bell-shaped distribution similar to the Normal distribu-
tion, but wider and shorter to reflect the greater variance introduced by using sp
to approximate the true standard deviation ap. The t distribution approaches the
Normal distribution (and therefore tN,k-l approaches zN) as k approaches infinity.
This is intuitively satisfying because we expect sp to converge toward the true
standard deviation ap as the sample size k grows, and because we can use ZN
when the standard deviation is known exactly.

5.6.2 Practical Considerations
Note the above discussion justifies the use of the confidence interval estimate
given by Equation (5.17) in the case where we wish to use the sample mean
Y to estimate the mean of a sample containing k independent, identically and
Normally distributed random variables. This fits the idealized method described

above, in which we assume unlimited access to examples of the target function. In
practice, given a limited set of data Do and the more practical method described
by Table 5.5, this justification does not strictly apply. In practice, the problem is
that the only way to generate new Si is to resample Do, dividing it into training
and test sets in different ways. The 6i are not independent of one another in this
case, because they are based on overlapping sets of training examples drawn from
the limited subset Do of data, rather than from the full distribution 'D.

When only a limited sample of data Do is available, several methods can be
used to resample Do. Table 5.5 describes a k-fold method in which Do is parti-
tioned into k disjoint, equal-sized subsets. In this k-fold approach, each example
from Do is used exactly once in a test set, and k - 1 times in a training set. A
second popular approach is to randomly choose a test set of at least 30 examples
from Do, use the remaining examples for training, then repeat this process as
many times as desired. This randomized method has the advantage that it can be
repeated an indefinite number of times, to shrink the confidence interval to the
desired width. In contrast, the k-fold method is limited by the total number of
examples, by the use of each example only once in a test set, and by our desire
to use samples of size at least 30. However, the randomized method has the dis-
advantage that the test sets no longer qualify as being independently drawn with
respect to the underlying instance distribution D. In contrast, the test sets gener-
ated by k-fold cross validation are independent because each instance is included
in only one test set.

To summarize, no single procedure for comparing learning methods based
on limited data satisfies all the constraints we would like. It is wise to keep in
mind that statistical models rarely fit perfectly the practical constraints in testing
learning algorithms when available data is limited. Nevertheless, they do pro-
vide approximate confidence intervals that can be of great help in interpreting
experimental comparisons of learning methods.

5.7 SUMMARY AND FURTHER READING
The main points of this chapter include:

0 Statistical theory provides a basis for estimating the true error (errorv(h))
of a hypothesis h, based on its observed error (errors(h)) over a sample S of
data. For example, if h is a discrete-valued hypothesis and the data sample
S contains n 2 30 examples drawn independently of h and of one another,
then the N% confidence interval for errorv(h) is approximately

where values for zN are given in Table 5.1.
0 In general, the problem of estimating confidence intervals is approached by

identifying the parameter to be estimated (e.g., errorD(h)) and an estimator

CHAFER 5 EVALUATING HYPOTHESES 151

(e.g., errors(h)) for this quantity. Because the estimator is a random variable
(e.g., errors(h) depends on the random sample S), it can be characterized
by the probability distribution that governs its value. Confidence intervals
can then be calculated by determining the interval that contains the desired
probability mass under this distribution.

0 One possible cause of errors in estimating hypothesis accuracy is estimation
bias. If Y is an estimator for some parameter p, the estimation bias of Y
is the difference between p and the expected value of Y. For example, if S
is the training data used to formulate hypothesis h, then errors(h) gives an
optimistically biased estimate of the true error errorD(h).

0 A second cause of estimation error is variance in the estimate. Even with an
unbiased estimator, the observed value of the estimator is likely to vary from
one experiment to another. The variance a2 of the distribution governing the
estimator characterizes how widely this estimate is likely to vary from the
correct value. This variance decreases as the size of the data sample is
increased.

0 Comparing the relative effectiveness of two learning algorithms is an esti-
mation problem that is relatively easy when data and time are unlimited, but
more difficult when these resources are limited. One possible approach de-
scribed in this chapter is to run the learning algorithms on different subsets
of the available data, testing the learned hypotheses on the remaining data,
then averaging the results of these experiments.

0 In most cases considered here, deriving confidence intervals involves making
a number of assumptions and approximations. For example, the above confi-
dence interval for errorv(h) involved approximating a Binomial distribution
by a Normal distribution, approximating the variance of this distribution, and
assuming instances are generated by a fixed, unchanging probability distri-
bution. While intervals based on such approximations are only approximate
confidence intervals, they nevertheless provide useful guidance for designing
and interpreting experimental results in machine learning.

The key statistical definitions presented in this chapter are summarized in
Table 5.2.

An ocean of literature exists on the topic of statistical methods for estimating
means and testing significance of hypotheses. While this chapter introduces the
basic concepts, more detailed treatments of these issues can be found in many
books and articles. Billingsley et al. (1986) provide a very readable introduction
to statistics that elaborates on the issues discussed here. Other texts on statistics
include DeGroot (1986); Casella and Berger (1990). Duda and Hart (1973) provide
a treatment of these issues in the context of numerical pattern recognition.

Segre et al. (1991, 1996), Etzioni and Etzioni (1994), and Gordon and
Segre (1996) discuss statistical significance tests for evaluating learning algo-
rithms whose performance is measured by their ability to improve computational
efficiency.

Geman et al. (1992) discuss the tradeoff involved in attempting to minimize
bias and variance simultaneously. There is ongoing debate regarding the best way
to learn and compare hypotheses from limited data. For example, Dietterich (1996)
discusses the risks of applying the paired-difference t test repeatedly to different
train-test splits of the data.

EXERCISES
5.1. Suppose you test a hypothesis h and find that it commits r = 300 errors on a sample

S of n = 1000 randomly drawn test examples. What is the standard deviation in
errors(h)? How does this compare to the standard deviation in the example at the
end of Section 5.3.4?

5.2. Consider a learned hypothesis, h , for some boolean concept. When h is tested on a
set of 100 examples, it classifies 83 correctly. What is the standard deviation and
the 95% confidence interval for the true error rate for Errorv(h)?

5.3. Suppose hypothesis h commits r = 10 errors over a sample of n = 65 independently
drawn examples. What is the 90% confidence interval (two-sided) for the true error
rate? What is the 95% one-sided interval (i.e., what is the upper bound U such that
errorv(h) 5 U with 95% confidence)? What is the 90% one-sided interval?

5.4. You are about to test a hypothesis h whose errorV(h) is known to be in the range
between 0.2 and 0.6. What is the minimum number of examples you must collect
to assure that the width of the two-sided 95% confidence interval will be smaller
than 0.1?

5.5. Give general expressions for the upper and lower one-sided N% confidence intervals
for the difference in errors between two hypotheses tested on different samples of
data. Hint: Modify the expression given in Section 5.5.

5.6. Explain why the confidence interval estimate given in Equation (5.17) applies to
estimating the quantity in Equation (5.16), and not the quantity in Equation (5.14).

REFERENCES
Billingsley, P., Croft, D. J., Huntsberger, D. V., & Watson, C. J. (1986). Statistical inference for

management and economics. Boston: Allyn and Bacon, Inc.
Casella, G., & Berger, R. L. (1990). Statistical inference. Pacific Grove, CA: Wadsworth and

BrooksICole.
DeGroot, M. H. (1986). Probability and statistics. (2d ed.) Reading, MA: Addison Wesley.
Dietterich, T. G. (1996). Proper statistical tests for comparing supervised classiJication learning

algorithms (Technical Report). Department of Computer Science, Oregon State University,
Cowallis, OR.

Dietterich, T. G., & Kong, E. B. (1995). Machine learning bias, statistical bias, and statistical
variance of decision tree algorithms (Technical Report). Department of Computer Science,
Oregon State University, Cowallis, OR.

Duda, R., & Hart, P. (1973). Pattern classiJication and scene analysis. New York: John Wiley &
Sons.

Efron, B., & Tibshirani, R. (1991). Statistical data analysis in the computer age. Science, 253, 390-
395.

Etzioni, O., & Etzioni, R. (1994). Statistical methods for analyzing speedup learning experiments.
Machine Learning, 14, 333-347.

Geman, S., Bienenstock, E., & Doursat, R. (1992). Neural networks and the biadvariance dilemma.
Neural Computation, 4, 1-58.

Gordon, G., & Segre, A.M. (1996). Nonpararnetric statistical methods for experimental evaluations of
speedup learning. Proceedings of the Thirteenth International Conference on Machine Leam-
ing, Bari, Italy.

Maisel, L. (1971). Probability, statistics, and random processes. Simon and Schuster Tech Outlines.
New York: Simon and Schuster.

Segre, A., Elkan, C., & Russell, A. (1991). A critical look at experimental evaluations of EBL.
Machine Learning, 6(2).

Segre, A.M, Gordon G., & Elkan, C. P. (1996). Exploratory analysis of speedup learning data using
expectation maximization. Artificial Intelligence, 85, 301-3 19.

Speigel, M. R. (1991). Theory and problems of probability and statistics. Schaum's Outline Series.
New York: McGraw Hill.

Thompson, M.L., & Zucchini, W. (1989). On the statistical analysis of ROC curves. Statistics in
Medicine, 8, 1277-1290.

White, A. P., & Liu, W. Z. (1994). Bias in information-based measures in decision tree induction.
Machine Learning, 15, 321-329.

CHAPTER

BAYESIAN
LEARNING

Bayesian reasoning provides a probabilistic approach to inference. It is based on
the assumption that the quantities of interest are governed by probability distri-
butions and that optimal decisions can be made by reasoning about these proba-
bilities together with observed data. It is important to machine learning because
it provides a quantitative approach to weighing the evidence supporting alterna-
tive hypotheses. Bayesian reasoning provides the basis for learning algorithms
that directly manipulate probabilities, as well as a framework for analyzing the
operation of other algorithms that do not explicitly manipulate probabilities.

6.1 INTRODUCTION
Bayesian learning methods are relevant to our study of machine learning for
two different reasons. First, Bayesian learning algorithms that calculate explicit
probabilities for hypotheses, such as the naive Bayes classifier, are among the most
practical approaches to certain types of learning problems. For example, Michie
et al. (1994) provide a detailed study comparing the naive Bayes classifier to
other learning algorithms, including decision tree and neural network algorithms.
These researchers show that the naive Bayes classifier is competitive with these
other learning algorithms in many cases and that in some cases it outperforms
these other methods. In this chapter we describe the naive Bayes classifier and
provide a detailed example of its use. In particular, we discuss its application to
the problem of learning to classify text documents such as electronic news articles.

CHAFER 6 BAYESIAN LEARNING 155

For such learning tasks, the naive Bayes classifier is among the most effective
algorithms known.

The second reason that Bayesian methods are important to our study of ma-
chine learning is that they provide a useful perspective for understanding many
learning algorithms that do not explicitly manipulate probabilities. For exam-
ple, in this chapter we analyze algorithms such as the FIND-S and CANDIDATE-
ELIMINATION algorithms of Chapter 2 to determine conditions under which they
output the most probable hypothesis given the training data. We also use a
Bayesian analysis to justify a key design choice in neural network learning al-
gorithms: choosing to minimize the sum of squared errors when searching the
space of possible neural networks. We also derive an alternative error function,
cross entropy, that is more appropriate than sum of squared errors when learn-
ing target functions that predict probabilities. We use a Bayesian perspective to
analyze the inductive bias of decision tree learning algorithms that favor short
decision trees and examine the closely related Minimum Description Length prin-
ciple. A basic familiarity with Bayesian methods is important to understanding

U
and characterizing the operation of many algorithms in machine learning.

Features of Bayesian learning methods include:

0 Each observed training example can incrementally decrease or increase the
estimated probability that a hypothesis is correct. This provides a more
flexible approach to learning than algorithms that completely eliminate a
hypothesis if it is found to be inconsistent with any single example.

0 Prior knowledge can be combined with observed data to determine the final
probability ~f a hypothesis. In Bayesian learning, prior knowledge is pro-
vided by asserting (1) a prior probability for each candidate hypothesis, and
(2) a probability distribution over observed data for each possible hypothesis.
Bayesian methods can accommodate hypotheses that make probabilistic pre-
dictions (e.g., hypotheses such as "this pneumonia patient has a 93% chance
of complete recovery").

0 New instances can be classified by combining the predictions of multiple
hypotheses, weighted by their probabilities.

0 Even in cases where Bayesian methods prove computationally intractable,
they can provide a standard of optimal decision making against which other
practical methods can be measured.

One practical difficulty in applying Bayesian methods is that they typically
require initial knowledge of many probabilities. When these probabilities are not
known in advance they are often estimated based on background knowledge, pre-
viously available data, and assumptions about the form of the underlying distribu-
tions. A second practical difficulty is the significant computational cost required to
determine the Bayes optimal hypothesis in the general case (linear in the number
of candidate hypotheses). In certain specialized situations, this computational cost
can be significantly reduced.

The remainder of this chapter is organized as follows. Section 6.2 intro-
duces Bayes theorem and defines maximum likelihood and maximum a posteriori
probability hypotheses. The four subsequent sections then apply this probabilistic
framework to analyze several issues and learning algorithms discussed in earlier
chapters. For example, we show that several previously described algorithms out-
put maximum likelihood hypotheses, under certain assumptions. The remaining
sections then introduce a number of learning algorithms that explicitly manip-
ulate probabilities. These include the Bayes optimal classifier, Gibbs algorithm,
and naive Bayes classifier. Finally, we discuss Bayesian belief networks, a rela-
tively recent approach to learning based on probabilistic reasoning, and the EM
algorithm, a widely used algorithm for learning in the presence of unobserved
variables.

6.2 BAYES THEOREM
In machine learning we are often interested in determining the best hypothesis
from some space H, given the observed training data D. One way to specify
what we mean by the best hypothesis is to say that we demand the most probable
hypothesis, given the data D plus any initial knowledge about the prior probabil-
ities of the various hypotheses in H. Bayes theorem provides a direct method for
calculating such probabilities. More precisely, Bayes theorem provides a way to
calculate the probability of a hypothesis based on its prior probability, the proba-
bilities of observing various data given the hypothesis, and the observed data itself.

To define Bayes theorem precisely, let us first introduce a little notation. We
shall write P(h) to denote the initial probability that hypothesis h holds, before we
have observed the training data. P(h) is often called the priorprobability of h and
may reflect any background knowledge we have about the chance that h is a correct
hypothesis. If we have no such prior knowledge, then we might simply assign
the same prior probability to each candidate hypothesis. Similarly, we will write
P (D) to denote the prior probability that training data D will be observed (i.e.,
the probability of D given no knowledge about which hypothesis holds). Next,
we will write P(D1h) to denote the probability of observing data D given some
world in which hypothesis h holds. More generally, we write P(xly) to denote
the probability of x given y. In machine learning problems we are interested in
the probability P (h 1 D) that h holds given the observed training data D. P (h 1 D) is
called the posteriorprobability of h, because it reflects our confidence that h holds
after we have seen the training data D . Notice the posterior probability P(h1D)
reflects the influence of the training data D, in contrast to the prior probability
P(h) , which is independent of D.

Bayes theorem is the cornerstone of Bayesian learning methods because
it provides a way to calculate the posterior probability P(hlD), from the prior
probability P(h), together with P (D) and P(D(h) .

Bayes theorem:

CHAPTER 6 BAYESIAN LEARNING 157

As one might intuitively expect, P(h ID) increases with P(h) and with P(D1h)
according to Bayes theorem. It is also reasonable to see that P(hl D) decreases as
P(D) increases, because the more probable it is that D will be observed indepen-
dent of h, the less evidence D provides in support of h.

In many learning scenarios, the learner considers some set of candidate
hypotheses H and is interested in finding the most probable hypothesis h E H
given the observed data D (or at least one of the maximally probable if there
are several). Any such maximally probable hypothesis is called a maximum a
posteriori (MAP) hypothesis. We can determine the MAP hypotheses by using
Bayes theorem to calculate the posterior probability of each candidate hypothesis.
More precisely, we will say that MAP is a MAP hypothesis provided

h ~ ~ p = argmax P(hlD)
h€H

= argmax P(D 1 h) P (h)
h€H

(6.2)

Notice in the final step above we dropped the term P (D) because it is a constant
independent of h.

In some cases, we will assume that every hypothesis in H is equally probable
a priori (P(hi) = P(h;) for all hi and h; in H). In this case we can further
simplify Equation (6.2) and need only consider the term P(D1h) to find the most
probable hypothesis. P(Dlh) is often called the likelihood of the data D given h,
and any hypothesis that maximizes P(Dlh) is called a maximum likelihood (ML)
hypothesis, hML.

hML = argmax P(Dlh)
h €H

In order to make clear the connection to machine learning problems, we
introduced Bayes theorem above by referring to the data D as training examples of
some target function and referring to H as the space of candidate target functions.
In fact, Bayes theorem is much more general than suggested by this discussion. It
can be applied equally well to any set H of mutually exclusive propositions whose
probabilities sum to one (e.g., "the sky is blue," and "the sky is not blue"). In this
chapter, we will at times consider cases where H is a hypothesis space containing
possible target functions and the data D are training examples. At other times we
will consider cases where H is some other set of mutually exclusive propositions,
and D is some other kind of data.

6.2.1 An Example
To illustrate Bayes rule, consider a medical diagnosis problem in which there are
two alternative hypotheses: (1) that the patien; has a- articular form of cancer.
and (2) that the patient does not. The avaiiable data is from a particular laboratory

test with two possible outcomes: $ (positive) and 8 (negative). We have prior
knowledge that over the entire population of people only .008 have this disease.
Furthermore, the lab test is only an imperfect indicator of the disease. The test
returns a correct positive result in only 98% of the cases in which the disease is
actually present and a correct negative result in only 97% of the cases in which
the disease is not present. In other cases, the test returns the opposite result. The
above situation can be summarized by the following probabilities:

Suppose we now observe a new patient for whom the lab test returns a positive
result. Should we diagnose the patient as having cancer or not? The maximum a
posteriori hypothesis can be found using Equation (6.2):

Thus, h ~ ~ p = -cancer. The exact posterior hobabilities can also be determined
by normalizing the above quantities so that they sum to 1 (e.g., P(cancer($) =
.00;~~298 = .21). This step is warranted because Bayes theorem states that the
posterior probabilities are just the above quantities divided by the probability of
the data, P(@). Although P($) was not provided directly as part of the problem
statement, we can calculate it in this fashion because we know that P(cancerl$)
and P(-cancerl$) must sum to 1 (i.e., either the patient has cancer or they do
not). Notice that while the posterior probability of cancer is significantly higher
than its prior probability, the most probable hypothesis is still that the patient does
not have cancer.

As this example illustrates, the result of Bayesian inference depends strongly
on the prior probabilities, which must be available in order to apply the method
directly. Note also that in this example the hypotheses are not completely accepted
or rejected, but rather become more or less probable as more data is observed.

Basic formulas for calculating probabilities are summarized in Table 6.1.

6.3 BAYES THEOREM AND CONCEPT LEARNING
What is the relationship between Bayes theorem and the problem of concept learn-
ing? Since Bayes theorem provides a principled way to calculate the posterior
probability of each hypothesis given the training data, we can use it as the basis
for a straightforward learning algorithm that calculates the probability for each
possible hypothesis, then outputs the most probable. This section considers such
a brute-force Bayesian concept learning algorithm, then compares it to concept
learning algorithms we considered in Chapter 2. As we shall see, one interesting
result of this comparison is that under certain conditions several algorithms dis-
cussed in earlier chapters output the same hypotheses as this brute-force Bayesian

CHAPTER 6 BAYESIAN LEARNING 159
- . Product rule: probability P (A A B) of a conjunction of two events A and B

Sum rule: probability of a disjunction of two events A and B

Bayes theorem: the posterior probability P(hl D) of h given D

. Theorem of totalprobability: if events A 1 , . . . , A, are mutually exclusive with xy=l P (A i) = 1 ,
then

TABLE 6.1
Summary of basic probability formulas.

11

t
algorithm, despite the fact that they do not explicitly manipulate probabilities and
are considerably more efficient.

6.3.1 Brute-Force Bayes Concept Learning
Consider the concept learning problem first introduced in Chapter 2. In particular,
assume the learner considers some finite hypothesis space H defined over the
instance space X, in which the task is to learn some target concept c : X + {0,1}.
As usual, we assume that the learner is given some sequence of training examples
((x ~ , d l) . . . (xm, dm)) where xi is some instance from X and where di is the target
value of xi (i.e., di = c(xi)). To simplify the discussion in this section, we assume
the sequence of instances (xl . . . xm) is held fixed, so that the training data D can
be written simply as the sequence of target values D = (dl . . . dm) . It can be shown
(see Exercise 6.4) that this simplification does not alter the main conclusions of
this section.

We can design a straightforward concept learning algorithm to output the
maximum a posteriori hypothesis, based on Bayes theorem, as follows:

BRUTE-FORCE MAP LEARNING algorithm
1. For each hypothesis h in H, calculate the posterior probability

2. Output the hypothesis hMAP with the highest posterior probability

160 MACHINE LEARNING

This algorithm may require significant computation, because it applies Bayes theo-
rem to each hypothesis in H to calculate P(hJ D) . While this may prove impractical
for large hypothesis spaces, the algorithm is still of interest because it provides a
standard against which we may judge the performance of other concept learning
algorithms.

In order specify a Iearning problem for the BRUTE-FORCE MAP LEARNING
algorithm we must specify what values are to be used for P(h) and for P(D1h)
(as we shall see, P (D) will be determined once we choose the other two). We
may choose the probability distributions P(h) and P(D1h) in any way we wish,
to describe our prior knowledge about the learning task. Here let us choose them
to be consistent with the following assumptions:

1. The training data D is noise free (i.e., di = c(xi)) .

2. The target concept c is contained in the hypothesis space H

3. We have no a priori reason to believe that any hypothesis is more probable
than any other.

Given these assumptions, what values should we specify for P(h)? Given no
prior knowledge that one hypothesis is more likely than another, it is reasonable to
assign the same prior probability to every hypothesis h in H . Furthermore, because
we assume the target concept is contained in H we should require that these prior
probabilities sum to 1. Together these constraints imply that we should choose

1
P(h) = - for all h in H

IHI

What choice shall we make for P(Dlh)? P(D1h) is the probability of ob-
serving the target values D = (dl . . .dm) for the fixed set of instances (X I . . . x,),
given a world in which hypothesis h holds (i.e., given a world in which h is the
correct description of the target concept c). Since we assume noise-free training
data, the probability of observing classification di given h is just 1 if di = h(xi)
and 0 if di # h(xi). Therefore,

1 if di = h(xi) for all di in D
P(D1h) = (6.4)

0 otherwise

In other words, the probability of data D given hypothesis h is 1 if D is consistent
with h, and 0 otherwise.

Given these choices for P(h) and for P(Dlh) we now have a fully-defined
problem for the above BRUTE-FORCE MAP LEARNING algorithm. Let us consider the
first step of this algorithm, which uses Bayes theorem to compute the posterior
probability P(h1D) of each hypothesis h given the observed training data D .

CHAPTER 6 BAYESIAN LEARNING 161

Recalling Bayes theorem, we have

First consider the case where h is inconsistent with the training data D. Since
Equation (6.4) defines P(D)h) to be 0 when h is inconsistent with D, we have

P (~ (D) = - ' P(h) - - o if h is inconsistent with D
P(D)

The posterior probability of a hypothesis inconsistent with D is zero.
Now consider the case where h is consistent with D. Since Equation (6.4)

defines P(Dlh) to be 1 when h is consistent with D, we have

- 1 -- if h is consistent with D
IVSH,DI

where V S H , ~ is the subset of hypotheses from H that are consistent with D (i.e.,
V S H , ~ is the version space of H with respect to D as defined in Chapter 2). It
is easy to verify that P(D) = above, because the sum over all hypotheses
of P(h ID) must be one and because the number of hypotheses from H consistent
with D is by definition IVSH,DI. Alternatively, we can derive P(D) from the
theorem of total probability (see Table 6.1) and the fact that the hypotheses are
mutually exclusive (i.e., (Vi # j) (P(hi A hj) = 0))

To summarize, Bayes theorem implies that the posterior probability P(h ID)
under our assumed P(h) and P(D1h) is

if h is consistent with D
P(hlD) = (6 .3

0 otherwise

where IVSH,DI is the number of hypotheses from H consistent with D. The evo-
lution of probabilities associated with hypotheses is depicted schematically in
Figure 6.1. Initially (Figure 6 . 1 ~) all hypotheses have the same probability. As
training data accumulates (Figures 6.1 b and 6. lc), the posterior probability for
inconsistent hypotheses becomes zero while the total probability summing to one
is shared equally among the remaining consistent hypotheses.

The above analysis implies that under our choice for P(h) and P(Dlh), every
consistent hypothesis has posterior probability (1 / I V SH, I), and every inconsistent
hypothesis has posterior probability 0. Every consistent hypothesis is, therefore,
a MAP hypothesis.

6.3.2 MAP Hypotheses and Consistent Learners
The above analysis shows that in the given setting, every hypothesis consistent
with D is a MAP hypothesis. This statement translates directly into an interesting
statement about a general class of learners that we might call consistent learners.
We will say that a learning algorithm is a consistent learner provided it outputs a
hypothesis that commits zero errors over the training examples. Given the above
analysis, we can conclude that every consistent learner outputs a MAP hypothesis,
i f we assume a uniform prior probability distribution over H (i.e., P(hi) = P(hj)
for all i, j) , and ifwe assume deterministic, noise free training data (i.e., P(D Ih) =
1 i f D and h are consistent, and 0 otherwise).

Consider, for example, the concept learning algorithm FIND-S discussed in
Chapter 2. FIND-S searches the hypothesis space H from specific to general hy-
potheses, outputting a maximally specific consistent hypothesis (i.e., a maximally
specific member of the version space). Because FIND-S outputs a consistent hy-
pothesis, we know that it will output a MAP hypothesis under the probability
distributions P(h) and P(D1h) defined above. Of course FIND-S does not explic-
itly manipulate probabilities at all-it simply outputs a maximally specific member

hypotheses hypotheses
(a) (4

hypotheses
(c)

FIGURE 6.1
Evolution of posterior probabilities P(hlD) with increasing training data. (a) Uniform priors assign
equal probability to each hypothesis. As training data increases first to Dl (b), then to Dl A 0 2
(c), the posterior probability of inconsistent hypotheses becomes zero, while posterior probabilities
increase for hypotheses remaining in the version space.

CHAPTER 6 BAYESIAN LEARNING 163

of the version space. However, by identifying distributions for P (h) and P (D (h)
under which its output hypotheses will be MAP hypotheses, we have a useful way
of characterizing the behavior of FIND-S.

Are there other probability distributions for P(h) and P(D1h) under which
FIND-S outputs MAP hypotheses? Yes. Because FIND-S outputs a maximally spe-
cz$c hypothesis from the version space, its output hypothesis will be a MAP
hypothesis relative to any prior probability distribution that favors more specific
hypotheses. More precisely, suppose 3-1 is any probability distribution P(h) over
H that assigns P(h1) 2 P(hz) if hl is more specific than h2. Then it can be shown
that FIND-S outputs a MAP hypothesis assuming the prior distribution 3-1 and the
same distribution P(D1h) discussed above.

To summarize the above discussion, the Bayesian framework allows one
way to characterize the behavior of learning algorithms (e.g., FIND-S), even when
the learning algorithm does not explicitly manipulate probabilities. By identifying
probability distributions P(h) and P(Dlh) under which the algorithm outputs
optimal (i.e., MAP) hypotheses, we can characterize the implicit assumptions

, under which this algorithm behaves optimally.
(Using the Bayesian perspective to characterize learning algorithms in this

way is similar in spirit to characterizing the inductive bias of the learner. Recall
that in Chapter 2 we defined the inductive bias of a learning algorithm to be
the set of assumptions B sufficient to deductively justify the inductive inference
performed by the learner. For example, we described the inductive bias of the
CANDIDATE-ELIMINATION algorithm as the assumption that the target concept c is
included in the hypothesis space H. Furthermore, we showed there that the output
of this learning algorithm follows deductively from its inputs plus this implicit
inductive bias assumption. The above Bayesian interpretation provides an alter-
native way to characterize the assumptions implicit in learning algorithms. Here,
instead of modeling the inductive inference method by an equivalent deductive
system, we model it by an equivalent probabilistic reasoning system based on
Bayes theorem. And here the implicit assumptions that we attribute to the learner
are assumptions of the form "the prior probabilities over H are given by the
distribution P(h) , and the strength of data in rejecting or accepting a hypothesis
is given by P(Dlh)." The definitions of P(h) and P (D (h) given in this section
characterize the implicit assumptions of the CANDIDATE-ELIMINATION and FIND-S
algorithms. A probabilistic reasoning system based on Bayes theorem will exhibit
input-output behavior equivalent to these algorithms, provided it is given these
assumed probability distributions.

The discussion throughout this section corresponds to a special case of
Bayesian reasoning, because we considered the case where P(D1h) takes on val-
ues of only 0 and 1, reflecting the deterministic predictions of hypotheses and the
assumption of noise-free training data. As we shall see in the next section, we
can also model learning from noisy training data, by allowing P(D1h) to take on
values other than 0 and 1, and by introducing into P(D1h) additional assumptions
about the probability distributions that govern the noise.

6.4 MAXIMUM LIKELIHOOD AND LEAST-SQUARED ERROR
HYPOTHESES
As illustrated in the above section, Bayesian analysis can sometimes be used to
show that a particular learning algorithm outputs MAP hypotheses even though it
may not explicitly use Bayes rule or calculate probabilities in any form.

In this section we consider the problem of learning a continuous-valued
target function-a problem faced by many learning approaches such as neural
network learning, linear regression, and polynomial curve fitting. A straightfor-
ward Bayesian analysis will show that under certain assumptions any learning
algorithm that minimizes the squared error between the output hypothesis pre-
dictions and the training data will output a maximum likelihood hypothesis. The
significance of this result is that it provides a Bayesian justification (under cer-
tain assumptions) for many neural network and other curve fitting methods that
attempt to minimize the sum of squared errors over the training data.

Consider the following problem setting. Learner L considers an instance
space X and a hypothesis space H consisting of some class of real-valued functions
defined over X (i.e., each h in H is a function of the form h : X -+ 8, where
8 represents the set of real numbers). The problem faced by L is to learn an
unknown target function f : X -+ 8 drawn from H. A set of m training examples
is provided, where the target value of each example is corrupted by random
noise drawn according to a Normal probability distribution. More precisely, each
training example is a pair of the form (xi, d i) where di = f (xi) + ei. Here f (xi) is
the noise-free value of the target function and ei is a random variable represent-
ing the noise. It is assumed that the values of the ei are drawn independently and
that they are distributed according to a Normal distribution with zero mean. The
task of the learner is to output a maximum likelihood hypothesis, or, equivalently,
a MAP hypothesis assuming all hypotheses are equally probable a priori.

A simple example of such a problem is learning a linear function, though our
analysis applies to learning arbitrary real-valued functions. Figure 6.2 illustrates

FIGURE 6.2
Learning a real-valued function. The target
function f corresponds to the solid line.
The training examples (xi, di) are assumed
to have Normally distributed noise ei with
zero mean added to the true target value
f (xi). The dashed line corresponds to the
linear function that minimizes the sum of
squared errors. Therefore, it is the maximum

I likelihood hypothesis ~ M L , given these five
x training examples.

CHAPTER 6 BAYESIAN LEARNING 165

a linear target function f depicted by the solid line, and a set of noisy training
examples of this target function. The dashed line corresponds to the hypothesis
hML with least-squared training error, hence the maximum likelihood hypothesis.
Notice that the maximum likelihood hypothesis is not necessarily identical to the
correct hypothesis, f , because it is inferred from only a limited sample of noisy
training data.

Before showing why a hypothesis that minimizes the sum of squared errors
in this setting is also a maximum likelihood hypothesis, let us quickly review two
basic concepts from probability theory: probability densities and Normal distribu-
tions. First, in order to discuss probabilities over continuous variables such as e,
we must introduce probability densities. The reason, roughly, is that we wish for
the total probability over all possible values of the random variable to sum to one.
In the case of continuous variables we cannot achieve this by assigning a finite
probability to each of the infinite set of possible values for the random variable.
Instead, we speak of a probability density for continuous variables such as e and
require that the integral of this probability density over all possible values be one.
In general we will use lower case p to refer to the probability density function,
to distinguish it from a finite probability P (which we will sometimes refer to as
a probability mass). The probability density p(x0) is the limit as E goes to zero,
of times the probability that x will take on a value in the interval [xo, xo + 6) .

Probability density function:

Second, we stated that the random noise variable e is generated by a Normal
probability distribution. A Normal distribution is a smooth, bell-shaped distribu-
tion that can be completely characterized by its mean p and its standard deviation
a. See Table 5.4 for a precise definition.

Given this background we now return to the main issue: showing that the
least-squared error hypothesis is, in fact, the maximum likelihood hypothesis
within our problem setting. We will show this by deriving the maximum like-
lihood hypothesis starting with our earlier definition Equation (6.3), but using
lower case p to refer to the probability density

As before, we assume a fixed set of training instances (xl . . . xm) and there-
fore consider the data D to be the corresponding sequence of target values
D = (d l . . . d m) . Here di = f (x i) + ei. Assuming the training examples are mu-
tually independent given h, we can write P (D J h) as the product of the various
~ (d i lh)

Given that the noise ei obeys a Normal distribution with zero mean and unknown
variance a 2 , each di must also obey a Normal distribution with variance a2 cen-
tered around the true target value f (x i) rather than zero. Therefore p(di lh) can
be written as a Normal distribution with variance a2 and mean p = f (x i) . Let us
write the formula for this Normal distribution to describe p(di Ih), beginning with
the general formula for a Normal distribution from Table 5.4 and substituting the
appropriate p and a 2 . Because we are writing the expression for the probability
of di given that h is the correct description of the target function f , we will also
substitute p = f (x i) = h(xi) , yielding

We now apply a transformation that is common in maximum likelihood calcula-
tions: Rather than maximizing the above complicated expression we shall choose
to maximize its (less complicated) logarithm. This is justified because lnp is a
monotonic function of p. Therefore maximizing In p also maximizes p.

... 1 1 hML = argmax x l n - - -(di - h (~ i)) ~
h€H i=l dG7 202

The first term in this expression is a constant independent of h, and can therefore
be discarded, yielding

1
hMr = argmax C -s(di - h(xi)12

h€H i=l

Maximizing this negative quantity is equivalent to minimizing the corresponding
positive quantity.

Finally, we can again discard constants that are independent of h.

Thus, Equation (6.6) shows that the maximum likelihood hypothesis ~ M L is
the one that minimizes the sum of the squared errors between the observed training
values di and the hypothesis predictions h(x i) . This holds under the assumption
that the observed training values di are generated by adding random noise to

CHAPTER 6 BAYESIAN LEARNING 167

the true target value, where this random noise is drawn independently for each
example from a Normal distribution with zero mean. As the above derivation
makes clear, the squared error term (di - h (~ ~)) ~ follows directly from the exponent
in the definition of the Normal distribution. Similar derivations can be performed
starting with other assumed noise distributions, producing different results.

Notice the structure of the above derivation involves selecting the hypothesis
that maximizes the logarithm of the likelihood (In p(D1h)) in order to determine
the most probable hypothesis. As noted earlier, this yields the same result as max-
imizing the likelihood p(D1h). This approach of working with the log likelihood
is common to many Bayesian analyses, because it is often more mathematically
tractable than working directly with the likelihood. Of course, as noted earlier,
the maximum likelihood hypothesis might not be the MAP hypothesis, but if one
assumes uniform prior probabilities over the hypotheses then it is.

Why is it reasonable to choose the Normal distribution to characterize noise?
One reason, it must be admitted, is that it allows for a mathematically straightfor-
ward analysis. A second reason is that the smooth, bell-shaped distribution is a
good approximation to many types of noise in physical systems. In fact, the Cen- i tral Limit Theorem discussed in Chapter 5 shows that the sum of a sufficiently
large number of independent, identically distributed random variables itself obeys
a Normal distribution, regardless of the distributions of the individual variables.
This implies that noise generated by the sum of very many independent, but
identically distributed factors will itself be Normally distributed. Of course, in
reality, different components that contribute to noise might not follow identical
distributions, in which case this theorem will not necessarily justify our choice.

Minimizing the sum of squared errors is a common approach in many neural
network, curve fitting, and other approaches to approximating real-valued func-
tions. Chapter 4 describes gradient descent methods that seek the least-squared
error hypothesis in neural network learning.

Before leaving our discussion of the relationship between the maximum
likelihood hypothesis and the least-squared error hypothesis, it is important to
note some limitations of this problem setting. The above analysis considers noise
only in the target value of the training example and does not consider noise in
the attributes describing the instances themselves. For example, if the problem
is to learn to predict the weight of someone based on that person's age and
height, then the above analysis assumes noise in measurements of weight, but
perfect measurements of age and height. The analysis becomes significantly more
complex as these simplifying assumptions are removed.

6.5 MAXIMUM LIKELIHOOD HYPOTHESES FOR PREDICTING
PROBABILITIES
In the problem setting of the previous section we determined that the maximum
likelihood hypothesis is the one that minimizes the sum of squared errors over the
training examples. In this section we derive an analogous criterion for a second
setting that is common in neural network learning: learning to predict probabilities.

Consider the setting in which we wish to learn a nondeterministic (prob-
abilistic) function f : X -+ {0, 11, which has two discrete output values. For
example, the instance space X might represent medical patients in terms of their
symptoms, and the target function f (x) might be 1 if the patient survives the
disease and 0 if not. Alternatively, X might represent loan applicants in terms of
their past credit history, and f (x) might be 1 if the applicant successfully repays
their next loan and 0 if not. In both of these cases we might well expect f to be
probabilistic. For example, among a collection of patients exhibiting the same set
of observable symptoms, we might find that 92% survive, and 8% do not. This
unpredictability could arise from our inability to observe all the important distin-
guishing features of the patients, or from some genuinely probabilistic mechanism
in the evolution of the disease. Whatever the source of the problem, the effect is
that we have a target function f (x) whose output is a probabilistic function of the
input.

Given this problem setting, we might wish to learn a neural network (or other
real-valued function approximator) whose output is the probability that f (x) = 1.
In other words, we seek to learn the target function, f ' : X + [O, 11, such that
f '(x) = P (f (x) = 1). In the above medical patient example, if x is one of those
indistinguishable patients of which 92% survive, then f'(x) = 0.92 whereas the
probabilistic function f (x) will be equal to 1 in 92% of cases and equal to 0 in
the remaining 8%.

How can we learn f' using, say, a neural network? One obvious, brute-
force way would be to first collect the observed frequencies of 1's and 0's for
each possible value of x and to then train the neural network to output the target
frequency for each x. As we shall see below, we can instead train a neural network
directly from the observed training examples of f, yet still derive a maximum
likelihood hypothesis for f '.

What criterion should we optimize in order to find a maximum likelihood
hypothesis for f' in this setting? To answer this question we must first obtain
an expression for P(D1h). Let us assume the training data D is of the form
D = {(xl, dl) . . . (x,, dm)}, where di is the observed 0 or 1 value for f (xi).

Recall that in the maximum likelihood, least-squared error analysis of the
previous section, we made the simplifying assumption that the instances (xl . . . x,)
were fixed. This enabled us to characterize the data by considering only the target
values di. Although we could make a similar simplifying assumption in this case,
let us avoid it here in order to demonstrate that it has no impact on the final
outcome. Thus treating both xi and di as random variables, and assuming that
each training example is drawn independently, we can write P(D1h) as

m

P(Dlh) = n ,(xi, 41,) (6.7)
i=l

It is reasonable to assume, furthermore, that the probability of encountering
any particular instance xi is independent of the hypothesis h. For example, the
probability that our training set contains a particular patient xi is independent of
our hypothesis about survival rates (though of course the survival d, of the patient

CHAPTER 6 BAYESIAN LEARNING 169

does depend strongly on h). When x is independent of h we can rewrite the above
expression (applying the product rule from Table 6.1) as

Now what is the probability P(dilh, xi) of observing di = 1 for a single
instance xi, given a world in which hypothesis h holds? Recall that h is our
hypothesis regarding the target function, which computes this very probability.
Therefore, P(di = 1 1 h, xi) = h(xi), and in general

In order to substitute this into the Equation (6.8) for P(Dlh), let us first
" re-express it in a more mathematically manipulable form, as I'

It is easy to verify that the expressions in Equations (6.9) and (6.10) are equivalent.
Notice that when di = 1 , the second term from Equation (6.10), (1 - h(xi))'-",
becomes equal to 1. Hence P(di = l lh,xi) = h(xi), which is equivalent to the
first case in Equation (6.9). A similar analysis shows that the two equations are
also equivalent when di = 0.

We can use Equation (6.10) to substitute for P(di lh, xi) in Equation (6.8) to
obtain

Now we write an expression for the maximum likelihood hypothesis

The last term is a constant independent of h, so it can be dropped

The expression on the right side of Equation (6.12) can be seen as a gen-
eralization of the Binomial distribution described in Table 5.3. The expression in
Equation (6.12) describes the probability that flipping each of m distinct coins will
produce the outcome (dl . . .dm), assuming that each coin xi has probability h(xi)
of producing a heads. Note the Binomial distribution described in Table 5.3 is

similar, but makes the additional assumption that the coins have identical proba-
bilities of turning up heads (i.e., that h(xi) = h(xj), Vi, j). In both cases we assume
the outcomes of the coin flips are mutually independent-an assumption that fits
our current setting.

As in earlier cases, we will find it easier to work with the log of the likeli-
hood, yielding

Equation (6.13) describes the quantity that must be maximized in order to
obtain the maximum likelihood hypothesis in our current problem setting. This
result is analogous to our earlier result showing that minimizing the sum of squared
errors produces the maximum likelihood hypothesis in the earlier problem setting.
Note the similarity between Equation (6.13) and the general form of the entropy
function, -xi pi log pi, discussed in Chapter 3. Because of this similarity, the
negation of the above quantity is sometimes called the cross entropy.

6.5.1 Gradient Search to Maximize Likelihood in a Neural Net
Above we showed that maximizing the quantity in Equation (6.13) yields the
maximum likelihood hypothesis. Let us use G(h, D) to denote this quantity. In
this section we derive a weight-training rule for neural network learning that seeks
to maximize G(h, D) using gradient ascent.

As discussed in Chapter 4, the gradient of G(h, D) is given by the vector
of partial derivatives of G(h, D) with respect to the various network weights that
define the hypothesis h represented by the learned network (see Chapter 4 for a
general discussion of gradient-descent search and for details of the terminology
that we reuse here). In this case, the partial derivative of G(h, D) with respect to
weight wjk from input k to unit j is

To keep our analysis simple, suppose our neural network is constructed from
a single layer of sigmoid units. In this case we have

where xijk is the kth input to unit j for the ith training example, and d (x) is
the derivative of the sigmoid squashing function (again, see Chapter 4). Finally,

CIUPlER 6 BAYESIAN LEARNING 171

substituting this expression into Equation (6.14), we obtain a simple expression
for the derivatives that constitute the gradient

Because we seek to maximize rather than minimize P(D(h), we perform
gradient ascent rather than gradient descent search. On each iteration of the search
the weight vector is adjusted in the direction of the gradient, using the weight-
update rule

where
m

Awjk = 7 C (d i - hbi)) xijk (6.15)
i=l

and where 7 is a small positive constant that determines the step size of the i gradient ascent search.
It is interesting to compare this weight-update rule to the weight-update

rule used by the BACKPROPAGATION algorithm to minimize the sum of squared
errors between predicted and observed network outputs. The BACKPROPAGATION
update rule for output unit weights (see Chapter 4), re-expressed using our current
notation, is

where

Notice this is similar to the rule given in Equation (6.15) except for the extra term
h (x ,) (l - h(xi)), which is the derivative of the sigmoid function.

To summarize, these two weight update rules converge toward maximum
likelihood hypotheses in two different settings. The rule that minimizes sum of
squared error seeks the maximum likelihood hypothesis under the assumption
that the training data can be modeled by Normally distributed noise added to the
target function value. The rule that minimizes cross entropy seeks the maximum
likelihood hypothesis under the assumption that the observed boolean value is a
probabilistic function of the input instance.

6.6 MINIMUM DESCRIPTION LENGTH PRINCIPLE
Recall from Chapter 3 the discussion of Occam's razor, a popular inductive bias
that can be summarized as "choose the shortest explanation for the observed
data." In that chapter we discussed several arguments in the long-standing debate
regarding Occam's razor. Here we consider a Bayesian perspective on this issue

and a closely related principle called the Minimum Description Length (MDL)
principle.

The Minimum Description Length principle is motivated by interpreting the
definition of h M ~ p in the light of basic concepts from information theory. Consider
again the now familiar definition of MAP.

hMAP = argmax P(Dlh)P(h)
h€H

which can be equivalently expressed in terms of maximizing the log,

 MAP = argmax log2 P (D lh) + log, P (h)
h€H

or alternatively, minimizing the negative of this quantity

hMAp = argmin - log, P (D 1 h) - log, P(h)
h€H

Somewhat surprisingly, Equation (6.16) can be interpreted as a statement
that short hypotheses are preferred, assuming a particular representation scheme
for encoding hypotheses and data. To explain this, let us introduce a basic result
from information theory: Consider the problem of designing a code to transmit
messages drawn at random, where the probability of encountering message i is
pi. We are interested here in the most compact code; that is, we are interested in
the code that minimizes the expected number of bits we must transmit in order to
encode a message drawn at random. Clearly, to minimize the expected code length
we should assign shorter codes to messages that are more probable. Shannon and
Weaver (1949) showed that the optimal code (i.e., the code that minimizes the
expected message length) assigns - log, pi bitst to encode message i . We will
refer to the number of bits required to encode message i using code C as the
description length of message i with respect to C , which we denote by Lc(i) .

Let us interpret Equation (6.16) in light of the above result from coding
theory.

0 - log, P (h) is the description length of h under the optimal encoding for
the hypothesis space H. In other words, this is the size of the description
of hypothesis h using this optimal representation. In our notation, LC, (h) =
- log, P(h) , where CH is the optimal code for hypothesis space H.

0 -log2 P(D1h) is the description length of the training data D given
hypothesis h, under its optimal encoding. In our notation, Lc,,,(Dlh) =
- log, P(Dlh) , where C D , ~ is the optimal code for describing data D assum-
ing that both the sender and receiver know the hypothesis h .

t ~ o t i c e the expected length for transmitting one message is therefore xi -pi logz pi, the formula
for the entropy (see Chapter 3) of the set of possible messages.

CHAPTER 6 BAYESIAN LEARNING 173

0 Therefore we can rewrite Equation (6.16) to show that hMAP is the hypothesis
h that minimizes the sum given by the description length of the hypothesis
plus the description length of the data given the hypothesis.

where CH and CDlh are the optimal encodings for H and for D given h,
respectively.

The Minimum Description Length (MDL) principle recommends choosing
the hypothesis that minimizes the sum of these two description lengths. Of course
to apply this principle in practice we must choose specific encodings or represen-
tations appropriate for the given learning task. Assuming we use the codes C1 and
CZ to represent the hypothesis and the data given the hypothesis, we can state the
MDL principle as

1'

I Minimum Description Length principle: Choose hMDL where

The above analysis shows that if we choose C1 to be the optimal encoding
of hypotheses CH, and if we choose C2 to be the optimal encoding CDlh, then
~ M D L = A MAP.

Intuitively, we can think of the MDL principle as recommending the shortest
method for re-encoding the training data, where we count both the size of the
hypothesis and any additional cost of encoding the data given this hypothesis.

Let us consider an example. Suppose we wish to apply the MDL prin-
ciple to the problem of learning decision trees from some training data. What
should we choose for the representations C1 and C2 of hypotheses and data?
For C1 we might naturally choose some obvious encoding of decision trees, in
which the description length grows with the number of nodes in the tree and
with the number of edges. How shall we choose the encoding C2 of the data
given a particular decision tree hypothesis? To keep things simple, suppose that
the sequence of instances (xl . . .x,) is already known to both the transmitter
and receiver, so that we need only transmit the classifications (f (XI) . . . f (x,)).
(Note the cost of transmitting the instances themselves is independent of the cor-
rect hypothesis, so it does not affect the selection of ~ M D L in any case.) Now if
the training classifications (f (xl) . . . f (xm)) are identical to the predictions of the
hypothesis, then there is no need to transmit any information about these exam-
ples (the receiver can compute these values once it has received the hypothesis).
The description length of the classifications given the hypothesis in this case is,
therefore, zero. In the case where some examples are misclassified by h, then
for each misclassification we need to transmit a message that identifies which
example is misclassified (which can be done using at most logzm bits) as well

as its correct classification (which can be done using at most log2 k bits, where
k is the number of possible classifications). The hypothesis hMDL under the en-
coding~ C1 and C2 is just the one that minimizes the sum of these description
lengths.

Thus the MDL principle provides a way of trading off hypothesis complexity
for the number of errors committed by the hypothesis. It might select a shorter
hypothesis that makes a few errors over a longer hypothesis that perfectly classifies
the training data. Viewed in this light, it provides one method for dealing with
the issue of overjitting the data.

Quinlan and Rivest (1989) describe experiments applying the MDL principle
to choose the best size for a decision tree. They report that the MDL-based method
produced learned trees whose accuracy was comparable to that of the standard tree-
pruning methods discussed in Chapter 3. Mehta et al. (1995) describe an alternative
MDL-based approach to decision tree pruning, and describe experiments in which
an MDL-based approach produced results comparable to standard tree-pruning
methods.

What shall we conclude from this analysis of the Minimum Description
Length principle? Does this prove once and for all that short hypotheses are best?
No. What we have shown is only that ifa representation of hypotheses is chosen so
that the size of hypothesis h is - log2 P(h), and ifa representation for exceptions
is chosen so that the encoding length of D given h is equal to -log2 P(Dlh),
then the MDL principle produces MAP hypotheses. However, to show that we
have such a representation we must know all the prior probabilities P(h), as well
as the P(D1h). There is no reason to believe that the MDL hypothesis relative to
arbitrary encodings C1 and C2 should be preferred. As a practical matter it might
sometimes be easier for a human designer to specify a representation that captures
knowledge about the relative probabilities of hypotheses than it is to fully specify
the probability of each hypothesis. Descriptions in the literature on the application
of MDL to practical learning problems often include arguments providing some
form of justification for the encodings chosen for C1 and C2.

6.7 BAYES OPTIMAL CLASSIFIER
So far we have considered the question "what is the most probable hypothesis
given the training data?' In fact, the question that is often of most significance is
the closely related question "what is the most probable classiJication of the new
instance given the training data?'Although it may seem that this second question
can be answered by simply applying the MAP hypothesis to the new instance, in
fact it is possible to do better.

To develop some intuitions consider a hypothesis space containing three
hypotheses, hl, h2, and h3. Suppose that the posterior probabilities of these hy-
potheses given the training data are .4, .3, and .3 respectively. Thus, hl is the
MAP hypothesis. Suppose a new instance x is encountered, which is classified
positive by h l , but negative by h2 and h3. Taking all hypotheses into account,
the probability that x is positive is .4 (the probability associated with hi) , and

CHAFER 6 BAYESIAN LEARNING 175

the probability that it is negative is therefore .6. The most probable classification
(negative) in this case is different from the classification generated by the MAP
hypothesis.

In general, the most probable classification of the new instance is obtained
by combining the predictions of all hypotheses, weighted by their posterior prob-
abilities. If the possible classification of the new example can take on any value
v j from some set V, then the probability P(vjlD) that the correct classification
for the new instance is v;, is just

The optimal classification of the new instance is the value v,, for which
P (v; 1 D) is maximum.

Bayes optimal classification:

To illustrate in terms of the above example, the set of possible classifications
of the new instance is V = (@, 81, and

therefore

and

Any system that classifies new instances according to Equation (6.18) is
called a Bayes optimal classzjier, or Bayes optimal learner. No other classification
method using the same hypothesis space and same prior knowledge can outperform
this method on average. This method maximizes the probability that the new
instance is classified correctly, given the available data, hypothesis space, and
prior probabilities over the hypotheses.

For example, in learning boolean concepts using version spaces as in the
earlier section, the Bayes optimal classification of a new instance is obtained
by taking a weighted vote among all members of the version space, with each
candidate hypothesis weighted by its posterior probability.

Note one curious property of the Bayes optimal classifier is that the pre-
dictions it makes can correspond to a hypothesis not contained in H! Imagine
using Equation (6.18) to classify every instance in X. The labeling of instances
defined in this way need not correspond to the instance labeling of any single
hypothesis h from H. One way to view this situation is to think of the Bayes
optimal classifier as effectively considering a hypothesis space H' different from
the space of hypotheses H to which Bayes theorem is being applied. In particu-
lar, H' effectively includes hypotheses that perform comparisons between linear
combinations of predictions from multiple hypotheses in H.

6.8 GIBBS ALGORITHM
Although the Bayes optimal classifier obtains the best performance that can be
achieved from the given training data, it can be quite costly to apply. The expense
is due to the fact that it computes the posterior probability for every hypothesis
in H and then combines the predictions of each hypothesis to classify each new
instance.

An alternative, less optimal method is the Gibbs algorithm (see Opper and
Haussler 1991), defined as follows:

1. Choose a hypothesis h from H at random, according to the posterior prob-
ability distribution over H.

2. Use h to predict the classification of the next instance x.

Given a new instance to classify, the Gibbs algorithm simply applies a
hypothesis drawn at random according to the current posterior probability distri-
bution. Surprisingly, it can be shown that under certain conditions the expected
misclassification error for the Gibbs algorithm is at most twice the expected error
of the Bayes optimal classifier (Haussler et al. 1994). More precisely, the ex-
pected value is taken over target concepts drawn at random according to the prior
probability distribution assumed by the learner. Under this condition, the expected
value of the error of the Gibbs algorithm is at worst twice the expected value of
the error of the Bayes optimal classifier.

This result has an interesting implication for the concept learning problem
described earlier. In particular, it implies that if the learner assumes a uniform
prior over H, and if target concepts are in fact drawn from such a distribution
when presented to the learner, then classifying the next instance according to
a hypothesis drawn at random from the current version space (according to a
uniform distribution), will have expected error at most twice that of the Bayes
optimal classijier. Again, we have an example where a Bayesian analysis of a
non-Bayesian algorithm yields insight into the performance of that algorithm.

CHAPTJZR 6 BAYESIAN LEARNING 177

6.9 NAIVE BAYES CLASSIFIER
One highly practical Bayesian learning method is the naive Bayes learner, often
called the naive Bayes classijier. In some domains its performance has been shown
to be comparable to that of neural network and decision tree learning. This section
introduces the naive Bayes classifier; the next section applies it to the practical
problem of learning to classify natural language text documents.

The naive Bayes classifier applies to learning tasks where each instance x
is described by a conjunction of attribute values and where the target function
f (x) can take on any value from some finite set V. A set of training examples of
the target function is provided, and a new instance is presented, described by the
tuple of attribute values (a l , a2 . . .a,) . The learner is asked to predict the target
value, or classification, for this new instance.

The Bayesian approach to classifying the new instance is to assign the most
probable target value, VMAP, given the attribute values (a l , a2 . . . a,) that describe
the instance.

VMAP = argmax P(vj lal , a 2 . . . a,)
v j€v

We can use Bayes theorem to rewrite this expression as

Now we could attempt to estimate the two terms in Equation (6.19) based on
the training data. It is easy to estimate each of the P(v j) simply by counting the
frequency with which each target value vj occurs in the training data. However,
estimating the different P(al , a 2 . . . a,lvj) terms in this fashion is not feasible
unless we have a very, very large set of training data. The problem is that the
number of these terms is equal to the number of possible instances times the
number of possible target values. Therefore, we need to see every instance in
the instance space many times in order to obtain reliable estimates.

The naive Bayes classifier is based on the simplifying assumption that the
attribute values are conditionally independent given the target value. In other
words, the assumption is that given the target value of the instance, the probability
of observing the conjunction al , a2 . . .a, is just the product of the probabilities
for the individual attributes: P(a1, a2 . . . a, 1 v j) = ni P(ai lvj) . Substituting this
into Equation (6.19), we have the approach used by the naive Bayes classifier.

Naive Bayes classifier:

VNB = argmax P (vj) n P (ai 1vj) (6.20)
ujcv

where V N B denotes the target value output by the naive Bayes classifier. Notice
that in a naive Bayes classifier the number of distinct P(ailvj) terms that must

be estimated from the training data is just the number of distinct attribute values
times the number of distinct target values-a much smaller number than if we
were to estimate the P(a1, a2 . . . an lvj) terms as first contemplated.

To summarize, the naive Bayes learning method involves a learning step in
which the various P(vj) and P(ai Jvj) terms are estimated, based on their frequen-
cies over the training data. The set of these estimates corresponds to the learned
hypothesis. This hypothesis is then used to classify each new instance by applying
the rule in Equation (6.20). Whenever the naive Bayes assumption of conditional
independence is satisfied, this naive Bayes classification VNB is identical to the
MAP classification.

One interesting difference between the naive Bayes learning method and
other learning methods we have considered is that there is no explicit search
through the space of possible hypotheses (in this case, the space of possible
hypotheses is the space of possible values that can be assigned to the various P(vj)
and P(ailvj) terms). Instead, the hypothesis is formed without searching, simply by
counting the frequency of various data combinations within the training examples.

6.9.1 An Illustrative Example
Let us apply the naive Bayes classifier to a concept learning problem we consid-
ered during our discussion of decision tree learning: classifying days according
to whether someone will play tennis. Table 3.2 from Chapter 3 provides a set
of 14 training examples of the target concept PlayTennis, where each day is
described by the attributes Outlook, Temperature, Humidity, and Wind. Here we
use the naive Bayes classifier and the training data from this table to classify the
following novel instance:

(Outlook = sunny, Temperature = cool, Humidity = high, Wind = strong)

Our task is to predict the target value (yes or no) of the target concept
PlayTennis for this new instance. Instantiating Equation (6.20) to fit the current
task, the target value VNB is given by

= argrnax P(vj) P(0utlook = sunny)v,)P(Temperature = coolIvj)
vj~(yes,no]

Notice in the final expression that ai has been instantiated using the particular
attribute values of the new instance. To calculate VNB we now require 10 proba-
bilities that can be estimated from the training data. First, the probabilities of the
different target values can easily be estimated based on their frequencies over the
14 training examples

P(P1ayTennis = yes) = 9/14 = .64
P(P1ayTennis = no) = 5/14 = .36

CHAETER 6 BAYESIAN LEARNING 179

Similarly, we can estimate the conditional probabilities. For example, those for
Wind = strong are

P(Wind = stronglPlayTennis = yes) = 319 = .33

P(Wind = strongl PlayTennis = no) = 315 = .60

Using these probability estimates and similar estimates for the remaining attribute
values, we calculate V N B according to Equation (6.21) as follows (now omitting
attribute names for brevity)

Thus, the naive Bayes classifier assigns the target value PlayTennis = no to this
new instance, based on the probability estimates learned from the training data.
Furthermore, by normalizing the above quantities to sum to one we can calculate
the conditional probability that the target value is no, given the observed attribute
values. For the current example, this probability is ,02$ym,, = -795.

6.9.1.1 ESTIMATING PROBABILITIES

Up to this point we have estimated probabilities by the fraction of times the event
is observed to occur over the total number of opportunities. For example, in the
above case we estimated P(Wind = strong] Play Tennis = no) by the fraction %
where n = 5 is the total number of training examples for which PlayTennis = no,
and n, = 3 is the number of these for which Wind = strong.

While this observed fraction provides a good estimate of the probability in
many cases, it provides poor estimates when n, is very small. To see the difficulty,
imagine that, in fact, the value of P(Wind = strongl PlayTennis = no) is .08 and
that we have a sample containing only 5 examples for which PlayTennis = no.
Then the most probable value for n, is 0 . This raises two difficulties. First, $ pro-
duces a biased underestimate of the probability. Second, when this probability es-
timate is zero, this probability term will dominate the Bayes classifier if the future
query contains Wind = strong. The reason is that the quantity calculated in Equa-
tion (6.20) requires multiplying all the other probability terms by this zero value.

To avoid this difficulty we can adopt a Bayesian approach to estimating the
probability, using the m-estimate defined as follows.

m-estimate of probability:

Here, n, and n are defined as before, p is our prior estimate of the probability
we wish to determine, and m is a constant called the equivalent sample size,
which determines how heavily to weight p relative to the observed data. A typical
method for choosing p in the absence of other information is to assume uniform

priors; that is, if an attribute has k possible values we set p = i. For example, in
estimating P(Wind = stronglPlayTennis = no) we note the attribute Wind has
two possible values, so uniform priors would correspond to choosing p = .5. Note
that if m is zero, the m-estimate is equivalent to the simple fraction 2. If both n
and m are nonzero, then the observed fraction 2 and prior p will be combined
according to the weight m. The reason m is called the equivalent sample size is
that Equation (6.22) can be interpreted as augmenting the n actual observations
by an additional m virtual samples distributed according to p.

6.10 AN EXAMPLE: LEARNING TO CLASSIFY TEXT
To illustrate the practical importance of Bayesian learning methods, consider learn-
ing problems in which the instances are text documents. For example, we might
wish to learn the target concept "electronic news articles that I find interesting,"
or "pages on the World Wide Web that discuss machine learning topics." In both
cases, if a computer could learn the target concept accurately, it could automat-
ically filter the large volume of online text documents to present only the most
relevant documents to the user.

We present here a general algorithm for learning to classify text, based
on the naive Bayes classifier. Interestingly, probabilistic approaches such as the
one described here are among the most effective algorithms currently known for
learning to classify text documents. Examples of such systems are described by
Lewis (1991), Lang (1995), and Joachims (1996).

The naive Bayes algorithm that we shall present applies in the following
general setting. Consider an instance space X consisting of all possible text docu-
ments (i.e., all possible strings of words and punctuation of all possible lengths).
We are given training examples of some unknown target function f (x) , which
can take on any value from some finite set V. The task is to learn from these
training examples to predict the target value for subsequent text documents. For
illustration, we will consider the target function classifying documents as interest-
ing or uninteresting to a particular person, using the target values like and dislike
to indicate these two classes.

The two main design issues involved in applying the naive Bayes classifier
to such rext classification problems are first to decide how to represent an arbitrary
text document in terms of attribute values, and second to decide how to estimate
the probabilities required by the naive Bayes classifier.

Our approach to representing arbitrary text documents is disturbingly simple:
Given a text document, such as this paragraph, we define an attribute for each word
position in the document and define the value of that attribute to be the English
word found in that position. Thus, the current paragraph would be described by
11 1 attribute values, corresponding to the 11 1 word positions. The value of the
first attribute is the word "our," the value of the second attribute is the word
"approach," and so on. Notice that long text documents will require a larger
number of attributes than short documents. As we shall see, this will not cause
us any trouble.

CHAPTER 6 BAYESIAN LEARNING 181

Given this representation for text documents, we can now apply the naive
Bayes classifier. For the sake of concreteness, let us assume we are given a set of
700 training documents that a friend has classified as dislike and another 300 she
has classified as like. We are now given a new document and asked to classify
it. Again, for concreteness let us assume the new text document is the preceding
paragraph. In this case, we instantiate Equation (6.20) to calculate the naive Bayes
classification as

-a-

Vns = argmax P(Vj) n ~ (a i lvj)
vj~{like,dislike} i=l

- - argmax P(vj) P(a1 = "our"lvj)P(a2 = "approach"lvj)
v, ~{like,dislike}

To summarize, the naive Bayes classification VNB is the classification that max-
imizes the probability of observing the words that were actually found in the

I document, subject to the usual naive Bayes independence assumption. The inde- F pendence assumption P(al, . . . all l lvj) = nfL1 P(ai lvj) states in this setting that
the word probabilities for one text position are independent of the words that oc-
cur in other positions, given the document classification vj. Note this assumption
is clearly incorrect. For example, the probability of observing the word "learning"
in some position may be greater if the preceding word is "machine." Despite the
obvious inaccuracy of this independence assumption, we have little choice but to
make it-without it, the number of probability terms that must be computed is
prohibitive. Fortunately, in practice the naive Bayes learner performs remarkably
well in many text classification problems despite the incorrectness of this indepen-
dence assumption. Dorningos and Pazzani (1996) provide an interesting analysis
of this fortunate phenomenon.

To calculate VNB using the above expression, we require estimates for the
probability terms P(vj) and P(ai = wklvj) (here we introduce wk to indicate the kth
word in the English vocabulary). The first of these can easily be estimated based
on the fraction of each class in the training data (P(1ike) = .3 and P(dis1ike) = .7
in the current example). As usual, estimating the class conditional probabilities
(e.g., P(al = "our"ldis1ike)) is more problematic because we must estimate one
such probability term for each combination of text position, English word, and
target value. Unfortunately, there are approximately 50,000 distinct words in the
English vocabulary, 2 possible target values, and 11 1 text positions in the current
example, so we must estimate 2 . 11 1 -50,000 = 10 million such terms from the
training data.

Fortunately, we can make an additional reasonable assumption that reduces
the number of probabilities that must be estimated. In particular, we shall as-
sume the probability of encountering a specific word wk (e.g., "chocolate") is
independent of the specific word position being considered (e.g., a23 versus agg).
More formally, this amounts to assuming that the attributes are independent and
identically distributed, given the target classification; that is, P(ai = wk)vj) =

P(a, = wkJvj) for all i, j, k, m. Therefore, we estimate the entire set of proba-
bilities P(a1 = wk lvj), P(a2 = wk lv,) . . . by the single position-independent prob-
ability P(wklvj), which we will use regardless of the word position. The net
effect is that we now require only 2.50,000 distinct terms of the form P(wklvj).
This is still a large number, but manageable. Notice in cases where training data
is limited, the primary advantage of making this assumption is that it increases
the number of examples available to estimate each of the required probabilities,
thereby increasing the reliability of the estimates.

To complete the design of our learning algorithm, we must still choose a
method for estimating the probability terms. We adopt the m-estimate-Equa-
tion (6.22)-with uniform priors and with rn equal to the size of the word vocab-
ulary. Thus, the estimate for P(wklvj) will be

where n is the total number of word positions in all training examples whose
target value is vj, nk is the number of times word wk is found among these n
word positions, and I Vocabulary I is the total number of distinct words (and other
tokens) found within the training data.

To summarize, the final algorithm uses a naive Bayes classifier together
with the assumption that the probability of word occurrence is independent of
position within the text. The final algorithm is shown in Table 6.2. Notice the al-
gorithm is quite simple. During learning, the procedure LEARN~AIVEBAYES-TEXT
examines all training documents to extract the vocabulary of all words and to-
kens that appear in the text, then counts their frequencies among the different
target classes to obtain the necessary probability estimates. Later, given a new
document to be classified, the procedure CLASSINSAIVEJ~AYES-TEXT uses these
probability estimates to calculate VNB according to Equation (6.20). Note that
any words appearing in the new document that were not observed in the train-
ing set are simply ignored by CLASSIFYSAIVEBAYES-TEXT. Code for this algo-
rithm, as well as training data sets, are available on the World Wide Web at
http://www.cs.cmu.edu/-tom/book.htrnl.

6.10.1 Experimental Results
How effective is the learning algorithm of Table 6.2? In one experiment (see
Joachims 1996), a minor variant of this algorithm was applied to the problem
of classifying usenet news articles. The target classification for an article in this
case was the name of the usenet newsgroup in which the article appeared. One
can think of the task as creating a newsgroup posting service that learns to as-
sign documents to the appropriate newsgroup. In the experiment described by
Joachims (1996), 20 electronic newsgroups were considered (listed in Table 6.3).
Then 1,000 articles were collected from each newsgroup, forming a data set of
20,000 documents. The naive Bayes algorithm was then applied using two-thirds
of these 20,000 documents as training examples, and performance was measured

CHAPTER 6 BAYESIAN LEARNING 183

Examples is a set of text documents along with their target values. V is the set of all possible target
values. This function learns the probability terms P(wk Iv,), describing the probability that a randomly
drawn word from a document in class vj will be the English word wk. It also learns the class prior
probabilities P(vj).
1. collect all words, punctwtion, and other tokens that occur in Examples

a Vocabulary c the set of all distinct words and other tokens occurring in any text document
from Examples

2. calculate the required P(vj) and P(wkJvj) probability terms
For each target value vj in V do

docsj t the subset of documents from Examples for which the target value is vj
ldocs . I

P(uj) + 1ExornLlesl
a Texti c a single document created by concatenating all members of docsi
a n +*total number of distinct word positions in ~ e x c
0 for each word wk in Vocabulary

0 nk c number of times word wk occurs in Textj

P(wk lvj) + n+12LLoryl

" Return the estimated target value for the document Doc. ai denotes the word found in the ith position
within Doc.

0 positions t all word positions in Doc that contain tokens found in Vocabulary
a Return V N B , where

V N B = argmax ~ (v j) n P(ai 19)
V, E V ieposirions

TABLE 6.2
Naive Bayes algorithms for learning and classifying text. In addition to the usual naive Bayes as-
sumptions, these algorithms assume the probability of a word occurring is independent of its position
within the text.

over the remaining third. Given 20 possible newsgroups, we would expect random
guessing to achieve a classification accuracy of approximately 5%. The accuracy
achieved by the program was 89%. The algorithm used in these experiments was
exactly the algorithm of Table 6.2, with one exception: Only a subset of the words
occurring in the documents were included as the value of the Vocabulary vari-
able in the algorithm. In particular, the 100 most frequent words were removed
(these include words such as "the" and "of '), and any word occurring fewer than
three times was also removed. The resulting vocabulary contained approximately
38,500 words.

Similarly impressive results have been achieved by others applying similar
statistical learning approaches to text classification. For example, Lang (1995)
describes another variant of the naive Bayes algorithm and its application to
learning the target concept "usenet articles that I find interesting." He describes
the NEWSWEEDER system-a program for reading netnews that allows the user to
rate articles as he or she reads them. NEWSWEEDER then uses these rated articles as

TABLE 6.3
Twenty usenet newsgroups used in the text classification experiment. After training on 667 articles
from each newsgroup, a naive Bayes classifier achieved an accuracy of 89% predicting to which
newsgroup subsequent articles belonged. Random guessing would produce an accuracy of only 5%.

training examples to learn to predict which subsequent articles will be of interest
to the user, so that it can bring these to the user's attention. Lang (1995) reports
experiments in which NEWSWEEDER used its learned profile of user interests to
suggest the most highly rated new articles each day. By presenting the user with
the top 10% of its automatically rated new articles each day, it created a pool of
articles containing three to four times as many interesting articles as the general
pool of articles read by the user. For example, for one user the fraction of articles
rated "interesting" was 16% overall, but was 59% among the articles recommended
by NEWSWEEDER.

Several other, non-Bayesian, statistical text learning algorithms are common,
many based on similarity metrics initially developed for information retrieval (e.g.,
see Rocchio 197 1; Salton 199 1). Additional text learning algorithms are described
in Hearst and Hirsh (1996).

6.11 BAYESIAN BELIEF NETWORKS
As discussed in the previous two sections, the naive Bayes classifier makes signif-
icant use of the assumption that the values of the attributes a1 . . .a, are condition-
ally independent given the target value v. This assumption dramatically reduces
the complexity of learning the target function. When it is met, the naive Bayes
classifier outputs the optimal Bayes classification. However, in many cases this
conditional independence assumption is clearly overly restrictive.

A Bayesian belief network describes the probability distribution governing a
set of variables by specifying a set of conditional independence assumptions along
with a set of conditional probabilities. In contrast to the naive Bayes classifier,
which assumes that all the variables are conditionally independent given the value
of the target variable, Bayesian belief networks allow stating conditional indepen-
dence assumptions that apply to subsets of the variables. Thus, Bayesian belief
networks provide an intermediate approach that is less constraining than the global
assumption of conditional independence made by the naive Bayes classifier, but
more tractable than avoiding conditional independence assumptions altogether.
Bayesian belief networks are an active focus of current research, and a variety of
algorithms have been proposed for learning them and for using them for inference.

CHAPTER 6 BAYESIAN LEARNING 185

In this section we introduce the key concepts and the representation of Bayesian
belief networks. More detailed treatments are given by Pearl (1988), Russell and
Norvig (1995), Heckerman et al. (1995), and Jensen (1996).

In general, a Bayesian belief network describes the probability distribution
over a set of variables. Consider an arbitrary set of random variables Yl . . . Y,,
where each variable Yi can take on the set of possible values V(Yi). We define
the joint space of the set of variables Y to be the cross product V(Yl) x V(Y2) x
. . . V(Y,). In other words, each item in the joint space corresponds to one of the
possible assignments of values to the tuple of variables (Yl . . . Y,). The probability
distribution over this joint' space is called the joint probability distribution. The
joint probability distribution specifies the probability for each of the possible
variable bindings for the tuple (Yl . . . Y,). A Bayesian belief network describes
the joint probability distribution for a set of variables.

6.11.1 Conditional Independence i Let us begin our discussion of Bayesian belief networks by defining precisely
the notion of conditional independence. Let X , Y, and Z be three discrete-valued
random variables. We say that X is conditionally independent of Y given Z if
the probability distribution governing X is independent of the value of Y given a
value for 2; that is, if

where xi E V(X), yj E V(Y), and z k E V(Z). We commonly write the above
expression in abbreviated form as P(XIY, Z) = P(X1Z). This definition of con-
ditional independence can be extended to sets of variables as well. We say that
the set of variables X1 . . . Xi is conditionally independent of the set of variables
Yl . . . Ym given the set of variables 2 1 . . . Z, if

P (X 1 ... XIJY1 ... Ym, z1 ... Z,) = P (X l ... X1]Z1 ... Z,)

Note the correspondence between this definition and our use of conditional ,
independence in the definition of the naive Bayes classifier. The naive Bayes
classifier assumes that the instance attribute A1 is conditionally independent of
instance attribute A2 given the target value V. This allows the naive Bayes clas-
sifier to calculate P (A l , A21V) in Equation (6.20) as follows

Equation (6.23) is just the general form of the product rule of probability from
Table 6.1. Equation (6.24) follows because if A1 is conditionally independent of
A2 given V, then by our definition of conditional independence P (A1 IA2, V) =
P(A1IV).

S,B S,-B 7S.B 1s.-B

-C 0.6 0.9 0.2

Campfire

FIGURE 6.3
A Bayesian belief network. The network on the left represents a set of conditional independence
assumptions. In particular, each node is asserted to be conditionally independent of its nondescen-
dants, given its immediate parents. Associated with each node is a conditional probability table,
which specifies the conditional distribution for the variable given its immediate parents in the graph.
The conditional probability table for the Campjire node is shown at the right, where Campjire is
abbreviated to C, Storm abbreviated to S, and BusTourGroup abbreviated to B.

6.11.2 Representation
A Bayesian belief network (Bayesian network for short) represents the joint prob-
ability distribution for a set of variables. For example, the Bayesian network in
Figure 6.3 represents the joint probability distribution over the boolean variables
Storm, Lightning, Thunder, ForestFire, Campjre, and BusTourGroup. In general,
a Bayesian network represents the joint probability distribution by specifying a
set of conditional independence assumptions (represented by a directed acyclic
graph), together with sets of local conditional probabilities. Each variable in the
joint space is represented by a node in the Bayesian network. For each variable two
types of information are specified. First, the network arcs represent the assertion
that the variable is conditionally independent of its nondescendants in the network
given its immediate predecessors in the network. We say Xjis a descendant of

, Y if there is a directed path from Y to X. Second, a conditional probability table
is given for each variable, describing the probability distribution for that variable
given the values of its immediate predecessors. The joint probability for any de-
sired assignment of values (y l , . . . , y,) to the tuple of network variables (YI . . . Y,)
can be computed by the formula

n

~ (Y I , . . . , yd = n p (y i ~ p a r e n t s (~ i))
i = l

where Parents(Yi) denotes the set of immediate predecessors of Yi in the net-
work. Note the values of P(yiJ Parents(Yi)) are precisely the values stored in the
conditional probability table associated with node Yi.

To illustrate, the Bayesian network in Figure 6.3 represents the joint prob-
ability distribution over the boolean variables Storm, Lightning, Thunder, Forest-

C H m R 6 BAYESIAN LEARNING 187

Fire, Campfire, and BusTourGroup. Consider the node Campjire. The network
nodes and arcs represent the assertion that CampJire is conditionally indepen-
dent of its nondescendants Lightning and Thunder, given its immediate parents
Storm and BusTourGroup. This means that once we know the value of the vari-
ables Storm and BusTourGroup, the variables Lightning and Thunder provide no
additional information about Campfire. The right side of the figure shows the
conditional probability table associated with the variable Campfire. The top left
entry in this table, for example, expresses the assertion that

P(Campfire = TruelStorm = True, BusTourGroup = True) = 0.4

Note this table provides only the conditional probabilities of Campjire given its
parent variables Storm and BusTourGroup. The set of local conditional probability
tables for all the variables, together with the set of conditional independence as-
sumptions described by the network, describe the full joint probability distribution
for the network.

One attractive feature of Bayesian belief networks is that they allow a con-
venient way to represent causal knowledge such as the fact that Lightning causes
Thunder. In the terminology of conditional independence, we express this by stat-
ing that Thunder is conditionally independent of other variables in the network,
given the value of Lightning. Note this conditional independence assumption is
implied by the arcs in the Bayesian network of Figure 6.3.

6.11.3 Inference
We might wish to use a Bayesian network to infer the value of some target
variable (e.g., ForestFire) given the observed values of the other variables. Of
course, given that we are dealing with random variables it will not generally be
correct to assign the target variable a single determined value. What we really
wish to infer is the probability distribution for the target variable, which specifies
the probability that it will take on each of its possible values given the observed
values of the other variables. This inference step can be straightforward if values
for all of the other variables in the network are known exactly. In the more
general case we may wish to infer the probability distribution for some variable
(e.g., ForestFire) given observed values for only a subset of the other variables
(e.g., Thunder and BusTourGroup may be the only observed values available). In
general, a Bayesian network can be used to compute the probability distribution
for any subset of network variables given the values or distributions for any subset
of the remaining variables.

Exact inference of probabilities in general for an arbitrary Bayesian net-
work is known to be NP-hard (Cooper 1990). Numerous methods have been
proposed for probabilistic inference in Bayesian networks, including exact infer-
ence methods and approximate inference methods that sacrifice precision to gain
efficiency. For example, Monte Carlo methods provide approximate solutions by
randomly sampling the distributions of the unobserved variables (Pradham and
Dagum 1996). In theory, even approximate inference of probabilities in Bayesian

networks can be NP-hard (Dagum and Luby 1993). Fortunately, in practice ap-
proximate methods have been shown to be useful in many cases. Discussions of
inference methods for Bayesian networks are provided by Russell and Norvig
(1995) and by Jensen (1996).

6.11.4 Learning Bayesian Belief Networks
Can we devise effective algorithms for learning Bayesian belief networks from
training data? This question is a focus of much current research. Several different
settings for this learning problem can be considered. First, the network structure
might be given in advance, or it might have to be inferred from the training data.
Second, all the network variables might be directly observable in each training
example, or some might be unobservable.

In the case where the network structure is given in advance and the variables
are fully observable in the training examples, learning the conditional probability
tables is straightforward. We simply estimate the conditional probability table
entries just as we would for a naive Bayes classifier.

In the case where the network structure is given but only some of the variable
values are observable in the training data, the learning problem is more difficult.
This problem is somewhat analogous to learning the weights for the hidden units in
an artificial neural network, where the input and output node values are given but
the hidden unit values are left unspecified by the training examples. In fact, Russell
et al. (1995) propose a similar gradient ascent procedure that learns the entries in
the conditional probability tables. This gradient ascent procedure searches through
a space of hypotheses that corresponds to the set of all possible entries for the
conditional probability tables. The objective function that is maximized during
gradient ascent is the probability P(D1h) of the observed training data D given
the hypothesis h. By definition, this corresponds to searching for the maximum
likelihood hypothesis for the table entries.

6.11.5 Gradient Ascent Training of Bayesian Networks
The gradient ascent rule given by Russell et al. (1995) maximizes P(D1h) by
following the gradient of In P(D Ih) with respect to the parameters that define the
conditional probability tables of the Bayesian network. Let wi;k denote a single
entry in one of the conditional probability tables. In particular, let wijk denote
the conditional probability that the network variable Yi will take on the value yi,
given that its immediate parents Ui take on the values given by uik. For example,
if wijk is the top right entry in the conditional probability table in Figure 6.3, then
Yi is the variable Campjire, Ui is the tuple of its parents (Stomz, BusTourGroup),
yij = True, and uik = (False, False). The gradient of In P(D1h) is given by
the derivatives for each of the toijk. As we show below, each of these
derivatives can be calculated as

CHAPTER 6 BAYESIAN LEARNING 189

For example, to calculate the derivative of In P(D1h) with respect to the upper-
rightmost entry in the table of Figure 6.3 we will have to calculate the quan-
tity P(Campf ire = True, Storm = False, BusTourGroup = Falseld) for each
training example d in D . When these variables are unobservable for the training
example d , this required probability can be calculated from the observed variables
in d using standard Bayesian network inference. In fact, these required quantities
are easily derived from the calculations performed during most Bayesian network
inference, so learning can be performed at little additional cost whenever the
Bayesian network is used for inference and new evidence is subsequently obtained.

Below we derive Equation (6.25) following Russell et al. (1995). The re-
mainder of this section may be skipped on a first reading without loss of continuity.
To simplify notation, in this derivation we will write the abbreviation Ph(D) to
represent P (D J h) . Thus, our problem is to derive the gradient defined by the set
of derivatives for all i , j, and k . Assuming the training examples d in the
data set D are drawn independently, we write this derivative as

This last step makes use of the general equality 9 = 1- f (~) ax . W can now
introduce the values of the variables Yi and Ui = Parents(Yi) , by summing over
their possible values yijl and uiu.

This last step follows from the product rule of probability, Table 6.1. Now consider
the rightmost sum in the final expression above. Given that Wijk = Ph(yijl~ik), the
only term in this sum for which & is nonzero is the term for which j' = j and
i' = i . Therefore

Applying Bayes theorem to rewrite Ph (dlyi j , uik) , we have

Thus, we have derived the gradient given in Equation (6.25). There is one more
item that must be considered before we can state the gradient ascent training
procedure. In particular, we require that as the weights wijk are updated they
must remain valid probabilities in the interval [0,1]. We also require that the
sum xj wijk remains 1 for all i , k. These constraints can be satisfied by updating
weights in a two-step process. First we update each wijk by gradient ascent

where q is a small constant called the learning rate. Second, we renormalize
the weights wijk to assure that the above constraints are satisfied. As discussed
by Russell et al., this process will converge to a locally maximum likelihood
hypothesis for the conditional probabilities in the Bayesian network.

As in other gradient-based approaches, this algorithm is guaranteed only to
find some local optimum solution. An alternative to gradient ascent is the EM
algorithm discussed in Section 6.12, which also finds locally maximum likelihood
solutions.

6.11.6 Learning the Structure of Bayesian Networks
Learning Bayesian networks when the network structure is not known in advance
is also difficult. Cooper and Herskovits (1992) present a Bayesian scoring metric
for choosing among alternative networks. They also present a heuristic search
algorithm called K2 for learning network structure when the data is fully observ-
able. Like most algorithms for learning the structure of Bayesian networks, K2
performs a greedy search that trades off network complexity for accuracy over the
training data. In one experiment K2 was given a set of 3,000 training examples
generated at random from a manually constructed Bayesian network containing
37 nodes and 46 arcs. This particular network described potential anesthesia prob-
lems in a hospital operating room. In addition to the data, the program was also
given an initial ordering over the 37 variables that was consistent with the partial

CHAPTER 6 BAYESIAN LEARNING 191

ordering of variable dependencies in the actual network. The program succeeded
in reconstructing the correct Bayesian network structure almost exactly, with the
exception of one incorrectly deleted arc and one incorrectly added arc.

Constraint-based approaches to learning Bayesian network structure have
also been developed (e.g., Spirtes et al. 1993). These approaches infer indepen-
dence and dependence relationships from the data, and then use these relation-
ships to construct Bayesian networks. Surveys of current approaches to learning
Bayesian networks are provided by Heckerman (1995) and Buntine (1994).

6.12 THE EM ALGORITHM
In many practical learning settings, only a subset of the relevant instance features
might be observable. For example, in training or using the Bayesian belief network
of Figure 6.3, we might have data where only a subset of the network variables
Storm, Lightning, Thunder, ForestFire, Campfire, and BusTourGroup have been
observed. Many approaches have been proposed to handle the problem of learning
in the presence of unobserved variables. As we saw in Chapter 3, if some variable / is sometimes observed and sometimes not, then we can use the cases for which
it has been observed to learn to predict its values when it is not. In this section
we describe the EM algorithm (Dempster et al. 1977), a widely used approach
to learning in the presence of unobserved variables. The EM algorithm can be
used even for variables whose value is never directly observed, provided the
general form of the probability distribution governing these variables is known.
The EM algorithm has been used to train Bayesian belief networks (see Heckerman
1995) as well as radial basis function networks discussed in Section 8.4. The EM
algorithm is also the basis for many unsupervised clustering algorithms (e.g.,
Cheeseman et al. 1988), and it is the basis for the widely used Baum-Welch
forward-backward algorithm for learning Partially Observable Markov Models
(Rabiner 1989).

6.12.1 Estimating Means of k Gaussians
The easiest way to introduce the EM algorithm is via an example. Consider a
problem in which the data D is a set of instances generated by a probability
distribution that is a mixture of k distinct Normal distributions. This problem
setting is illustrated in Figure 6.4 for the case where k = 2 and where the instances
are the points shown along the x axis. Each instance is generated using a two-step
process. First, one of the k Normal distributions is selected at random. Second,
a single random instance xi is generated according to this selected distribution.
This process is repeated to generate a set of data points as shown in the figure. To
simplify our discussion, we consider the special case where the selection of the
single Normal distribution at each step is based on choosing each with uniform
probability, where each of the k Normal distributions has the same variance a2, and
where a2 is known. The learning task is to output a hypothesis h = (FI, . . . pk)
that describes the means of each of the k distributions. We would like to find

FIGURE 6.4
Instances generated by a mixture of two Normal distributions with identical variance a. The instances
are shown by the points along the x axis. If the means of the Normal distributions are unknown, the
EM algorithm can be used to search for their maximum likelihood estimates.

a maximum likelihood hypothesis for these means; that is, a hypothesis h that
maximizes p (D lh).

Note it is easy to calculate the maximum likelihood hypothesis for the mean
of a single Normal distribution given the observed data instances XI, x2, . . . , xm
drawn from this single distribution. This problem of finding the mean of a single
distribution is just a special case of the problem discussed in Section 6.4, Equa-
tion (6.6), where we showed that the maximum likelihood hypothesis is the one
that minimizes the sum of squared errors over the m training instances. Restating
Equation (6.6) using our current notation, we have

In this case, the sum of squared errors is minimized by the sample mean

Our problem here, however, involves a mixture of k different Normal dis-
tributions, and we cannot observe which instances were generated by which dis-
tribution. Thus, we have a prototypical example of a problem involving hidden
variables. In the example of Figure 6.4, we can think of the full description of
each instance as the triple (xi, zil , ziz), where xi is the observed value of the ith
instance and where zil and zi2 indicate which of the two Normal distributions was
used to generate the value xi. In particular, zij has the value 1 if xi was created by
the jth Normal distribution and 0 otherwise. Here xi is the observed variable in
the description of the instance, and zil and zi2 are hidden variables. If the values
of zil and zi2 were observed, we could use Equation (6.27) to solve for the means
p1 and p2. Because they are not, we will instead use the EM algorithm.

Applied to our k-means problem the EM algorithm searches for a maximum
likelihood hypothesis by repeatedly re-estimating the expected values of the hid-
den variables zij given its current hypothesis (pI . . . pk), then recalculating the

CHAPTER 6 BAYESIAN LEARNING 193

maximum likelihood hypothesis using these expected values for the hidden vari-
ables. We will first describe this instance of the EM algorithm, and later state the
EM algorithm in its general form.

'

Applied to the problem of estimating the two means for Figure 6.4, the
EM algorithm first initializes the hypothesis to h = (PI, p2), where p1 and p2 are
arbitrary initial values. It then iteratively re-estimates h by repeating the following
two steps until the procedure converges to a stationary value for h.

Step 1: Calculate the expected value E[zi j] of each hidden variable zi,, assuming
the current hypothesis h = (p1, p2) holds.

Step 2: Calculate a new maximum likelihood hypothesis h' = (pi, p;), assuming
the value taken on by each hidden variable zij is its expected value E[z i j]
calculated in Step 1. Then replace the hypothesis h = (pl, p2) by the
new hypothesis h' = (pi, pi) and iterate.

Let us examine how both of these steps can be implemented in practice. / Step 1 must calculate the expected value of each zi,. This E [4] is just the prob-
ability that instance xi was generated by the jth Normal distribution

Thus the first step is implemented by substituting the current values (pl, p2) and
the observed xi into the above expression.

In the second step we use the E[zij] calculated during Step 1 to derive a
new maximum likelihood hypothesis h' = (pi, pi). AS we will discuss later, the
maximum likelihood hypothesis in this case is given by

Note this expression is similar to the sample mean from Equation (6.28) that is
used to estimate p for a single Normal distribution. Our new expression is just
the weighted sample mean for pj , with each instance weighted by the expectation
E[z,j] that it was generated by the jth Normal distribution.

The above algorithm for estimating the means of a mixture of k Normal
distributions illustrates the essence of the EM approach: The current hypothesis
is used to estimate the unobserved variables, and the expected values of these
variables are then used to calculate an improved hypothesis. It can be proved that
on each iteration through this loop, the EM algorithm increases the likelihood
P(Dlh) unless it is at a local maximum. The algorithm thus converges to a local
maximum likelihood hypothesis for (pl, w2) .

6.12.2 General Statement of EM Algorithm
Above we described an EM algorithm for the problem of estimating means of a
mixture of Normal distributions. More generally, the EM algorithm can be applied
in many settings where we wish to estimate some set of parameters 8 that describe
an underlying probability distribution, given only the observed portion of the full
data produced by this distribution. In the above two-means example the parameters
of interest were 8 = (PI, p2), and the full data were the triples (xi, zil, zi2) of
which only the xi were observed. In general let X = {xl, . . . , x,} denote the
observed data in a set of m independently drawn instances, let Z = {zl, . . . , z,}
denote the unobserved data in these same instances, and let Y = X U Z denote
the full data. Note the unobserved Z can be treated as a random variable whose
probability distribution depends on the unknown parameters 8 and on the observed
data X. Similarly, Y is a random variable because it is defined in terms of the
random variable Z. In the remainder of this section we describe the general form
of the EM algorithm. We use h to denote the current hypothesized values of the
parameters 8, and h' to denote the revised hypothesis that is estimated on each
iteration of the EM algorithm.

The EM algorithm searches for the maximum likelihood hypothesis h' by
seeking the h' that maximizes E[ln P(Y (h')] . This expected value is taken over
the probability distribution governing Y , which is determined by the unknown
parameters 8. Let us consider exactly what this expression signifies. First, P(Ylhl)
is the likelihood of the full data Y given hypothesis h'. It is reasonable that we wish
to find a h' that maximizes some function of this quantity. Second, maximizing
the logarithm of this quantity In P(Ylhl) also maximizes P(Ylhl) , as we have
discussed on several occasions already. Third, we introduce the expected value
E[ln P(Ylhl)] because the full data Y is itself a random variable. Given that
the full data Y is a combination of the observed data X and unobserved data
Z, we must average over the possible values of the unobserved Z, weighting
each according to its probability. In other words we take the expected value
E[ln P(Y lh')] over the probability distribution governing the random variable Y .
The distribution governing Y is determined by the completely known values for
X, plus the distribution governing Z.

What is the probability distribution governing Y ? In general we will not
know this distribution because it is determined by the parameters 0 that we are
trying to estimate. Therefore, the EM algorithm uses its current hypothesis h in
place of the actual parameters 8 to estimate the distribution governing Y . Let us
define a function Q(hllh) that gives E[ln P(Y lh')] as a function of h', under the
assumption that 8 = h and given the observed portion X of the full data Y .

We write this function Q in the form Q(hllh) to indicate that it is defined in part
by the assumption that the current hypothesis h is equal to 8. In its general form,
the EM algorithm repeats the following two steps until convergence:

CHAPTER 6 BAYESIAN LEARNING 195

Step 1: Estimation (E) step: Calculate Q(hllh) using the current hypothesis h and
the observed data X to estimate the probability distribution over Y .

Q(hf (h) t E[ln P(Ylhl)lh, XI
Step 2: Maximization (M) step: Replace hypothesis h by the hypothesis h' that

maximizes this Q function.
h t argmax Q (hf 1 h)

h'

When the function Q is continuous, the EM algorithm converges to a sta-
tionary point of the likelihood function P(Y(h l) . When this likelihood function
has a single maximum, EM will converge to this global maximum likelihood es-
timate for h'. Otherwise, it is guaranteed only to converge to a local maximum.
In this respect, EM shares some of the same limitations as other optimization
methods such as gradient descent, line search, and conjugate gradient discussed
in Chapter 4.

11 6.12.3 Derivation of the k Means Algorithm
To illustrate the general EM algorithm, let us use it to derive the algorithm given in
Section 6.12.1 for estimating the means of a mixture of k Normal distributions. As
discussed above, the k-means problem is to estimate the parameters 0 = (P I . . . pk)
that define the means of the k Normal distributions. We are given the observed
data X = { (x i) } . The hidden variables Z = { (z i l , . . . , z i k) } in this case indicate
which of the k Normal distributions was used to generate xi.

To apply EM we must derive an expression for Q(h(hf) that applies to
our k-means problem. First, let us derive an expression for 1np(Y(h1). Note the
probability p(yi (h') of a single instance yi = (x i , Z i l , . . . ~ i k) of the full data can
be written

To verify this note that only one of the zij can have the value 1, and all others must
be 0. Therefore, this expression gives the probability distribution for xi generated
by the selected Normal distribution. Given this probability for a single instance
p(yi(hl) , the logarithm of the probability In P(Y(hl) for all m instances in the
data is

m

lnP(Ylhf) = l n n p (, l h l)
i = l

Finally we must take the expected value of this In P(Ylhl) over the probability
distribution governing Y or, equivalently, over the distribution governing the un-
observed components zij of Y. Note the above expression for In P(Ylhl) is a linear
function of these zij. In general, for any function f (z) that is a linear function of
z, the following equality holds

E[f (z)l = f (Ek.1)
This general fact about linear functions allows us to write

To summarize, the function Q(hllh) for the k means problem is

where h' = (pi , . . . ,p i) and where E[zij] is calculated based on the current
hypothesis h and observed data X. As discussed earlier

e - & (x ' - ~) 2

E[zij] = - --+ - - P ") ~
(6.29)

EL1 e 2
Thus, the first (estimation) step of the EM algorithm defines the Q function

based on the estimated E[zij] terms. The second (maximization) step then finds
the values pi, . . . , pi that maximize this Q function. In the current case

1 1 argmax Q(hllh) = argmax - - -
h'

C E[zijI(xi -
h1 i=l &2 2u2 j=l

Thus, the maximum likelihood hypothesis here minimizes a weighted sum of
squared errors, where the contribution of each instance xi to the error that defines
pj is weighted by E[zij]. The quantity given by Equation (6.30) is minimized by
setting each pi to the weighted sample mean

Note that Equations (6.29) and (6.31) define the two steps in the k-means
algorithm described in Section 6.12.1.

CHAPTER 6 BAYESIAN LEARNING 197

6.13 SUMMARY AND FURTHER READING
The main points of this chapter include:

0 Bayesian methods provide the basis for probabilistic learning methods that
accommodate (and require) knowledge about the prior probabilities of alter-
native hypotheses and about the probability of observing various data given
the hypothesis. Bayesian methods allow assigning a posterior probability to
each candidate hypothesis, based on these assumed priors and the observed
data.

0 Bayesian methods can be used to determine the most probable hypothesis
given the data-the maximum a posteriori (MAP) hypothesis. This is the
optimal hypothesis in the sense that no other hypothesis is more likely.

0 The Bayes optimal classifier combines the predictions of all alternative hy-
potheses, weighted by their posterior probabilities, to calculate the most
probable classification of each new instance.

i 0 The naive Bayes classifier is a Bayesian learning method that has been found
to be useful in many practical applications. It is called "naive" because it in-
corporates the simplifying assumption that attribute values are conditionally
independent, given the classification of the instance. When this assumption
is met, the naive Bayes classifier outputs the MAP classification. Even when
this assumption is not met, as in the case of learning to classify text, the
naive Bayes classifier is often quite effective. Bayesian belief networks pro-
vide a more expressive representation for sets of conditional independence
assumptions among subsets of the attributes.

0 The framework of Bayesian reasoning can provide a useful basis for ana-
lyzing certain learning methods that do not directly apply Bayes theorem.
For example, under certain conditions it can be shown that minimizing the
squared error when learning a real-valued target function corresponds to
computing the maximum likelihood hypothesis.

0 The Minimum Description Length principle recommends choosing the hy-
pothesis that minimizes the description length of the hypothesis plus the
description length of the data given the hypothesis. Bayes theorem and ba-
sic results from information theory can be used to provide a rationale for
this principle.

0 In many practical learning tasks, some of the relevant instance variables
may be unobservable. The EM algorithm provides a quite general approach
to learning in the presence of unobservable variables. This algorithm be-
gins with an arbitrary initial hypothesis. It then repeatedly calculates the
expected values of the hidden variables (assuming the current hypothesis
is correct), and then recalculates the maximum likelihood hypothesis (as-
suming the hidden variables have the expected values calculated by the first
step). This procedure converges to a local maximum likelihood hypothesis,
along with estimated values for the hidden variables.

There are many good introductory texts on probability and statistics, such
as Casella and Berger (1990). Several quick-reference books (e.g., Maisel 1971;
Speigel 1991) also provide excellent treatments of the basic notions of probability
and statistics relevant to machine learning.

Many of the basic notions of Bayesian classifiers and least-squared error
classifiers are discussed by Duda and Hart (1973). Domingos and Pazzani (1996)
provide an analysis of conditions under which naive Bayes will output optimal
classifications, even when its independence assumption is violated (the key here
is that there are conditions under which it will output optimal classifications even
when the associated posterior probability estimates are incorrect).

Cestnik (1990) provides a discussion of using the m-estimate to estimate
probabilities.

Experimental results comparing various Bayesian approaches to decision tree
learning and other algorithms can be found in Michie et al. (1994). Chauvin and
Rumelhart (1995) provide a Bayesian analysis of neural network learning based
on the BACKPROPAGATION algorithm.

A discussion of the Minimum Description Length principle can be found in
Rissanen (1983, 1989). Quinlan and Rivest (1989) describe its use in avoiding
overfitting in decision trees.

EXERCISES
6.1. Consider again the example application of Bayes rule in Section 6.2.1. Suppose the

doctor decides to order a second laboratory test for the same patient, and suppose
the second test returns a positive result as well. What are the posterior probabilities
of cancer and -cancer following these two tests? Assume that the two tests are
independent.

6.2. In the example of Section 6.2.1 we computed the posterior probability of cancer by
normalizing the quantities P (+(cancer) . P (cancer) and P (+I-cancer) . P (-cancer)
so that they summed to one, Use Bayes theorem and the theorem of total probability
(see Table 6.1) to prove that this method is valid (i.e., that normalizing in this way
yields the correct value for P(cancerl+)).

6.3. Consider the concept learning algorithm FindG, which outputs a maximally general
consistent hypothesis (e.g., some maximally general member of the version space).
(a) Give a distribution for P(h) and P(D1h) under which FindG is guaranteed to

output a MAP hypothesis.
(6) Give a distribution for P(h) and P(D1h) under which FindG is not guaranteed

to output a MAP .hypothesis.
(c) Give a distribution for P(h) and P(D1h) under which FindG is guaranteed to

output a ML hypothesis but not a MAP hypothesis.
6.4. In the analysis of concept learning in Section 6.3 we assumed that the sequence of

instances (x l . . . x,) was held fixed. Therefore, in deriving an expression for P (D (h)
we needed only consider the probability of observing the sequence of target values
(d l . . . dm) for this fixed instance sequence. Consider the more general setting in
which the instances are not held fixed, but are drawn independently from some
probability distribution defined over the instance space X. The data D must now
be described as the set of ordered pairs { (x i , di)}, and P(D1h) must now reflect the

CHAPTER 6 BAYESIAN LEARNING 199

probability of encountering the specific instance X I , as well as the probability of
the observed target value di. Show that Equation (6.5) holds even under this more
general setting. Hint: Consider the analysis of Section 6.5.

6.5. Consider the Minimum Description Length principle applied to the hypothesis space
H consisting of conjunctions of up to n boolean attributes (e.g., Sunny A Warm).
Assume each hypothesis is encoded simply by listing the attributes present in the
hypothesis, where the number of bits needed to encode any one of the n boolean at-
tributes is log, n. Suppose the encoding of an example given the hypothesis uses zero
bits if the example is consistent with the hypothesis and uses log, m bits otherwise
(to indicate which of the m examples was misclassified-the correct classification
can be inferred to be the opposite of that predicted by the hypothesis).
(a) Write down the expression for the quantity to be minimized according to the

Minimum Description Length principle.
(b) Is it possible to construct a set of training data such that a consistent hypothesis

exists, but MDL chooses a less consistent hypothesis? If so, give such a training
set. If not, explain why not.

(c) Give probability distributions for P (h) and P(D1h) such that the above MDL
algorithm outputs MAP hypotheses.

6.6. Draw the Bayesian belief network that represents the conditional independence as-
sumptions of the naive Bayes classifier for the PlayTennis problem of Section 6.9.1.
Give the conditional probability table associated with the node Wind.

REFERENCES
Buntine W. L. (1994). Operations for learning with graphical models. Journal of Art$cial Intelligence

Research, 2, 159-225. http://www.cs.washington.edu/research/jair/hom.html.
Casella, G., & Berger, R. L. (1990). Statistical inference. Pacific Grove, CA: Wadsworth &

Brooks/Cole.
Cestnik, B. (1990). Estimating probabilities: A crucial task in machine learning. Proceedings of the

Ninth European Conference on Am&5al Intelligence (pp. 147-149). London: Pitman.
Chauvin, Y., & Rumelhart, D. (1995). Backpropagation: Theory, architectures, and applications,

(edited collection). Hillsdale, NJ: Lawrence Erlbaum Assoc.
Cheeseman, P., Kelly, J., Self, M., Stutz, J., Taylor, W., & Freeman, D. (1988). AUTOCLASS: A

bayesian classification system. Proceedings of AAAI I988 (pp. 607-611).
Cooper, G. (1990). Computational complexity of probabilistic inference using Bayesian belief net-

works (research note). Art@cial Intelligence, 42, 393-405.
Cooper, G., & Herskovits, E. (1992). A Bayesian method for the induction of probabilistic networks

from data. Machine Learning, 9, 309-347.
Dagum, P., & Luby, M. (1993). Approximating probabilistic reasoning in Bayesian belief networks

is NP-hard. Art$cial Intelligence, 60(1), 141-153.
Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data

via the EM algorithm. Journal of the Royal Statistical Society, Series B, 39(1), 1-38.
Domingos, P., & Pazzani, M. (1996). Beyond independence: Conditions for the optimality of the sim-

ple Bayesian classifier. Proceedings of the 13th International Conference on Machine Learning
@p. 105-112).

Duda, R. O., & Hart, P. E. (1973). Pattern class$cation and scene analysis. New York: John Wiley
& Sons.

Hearst, M., & Hirsh, H. (Eds.) (1996). Papers from the AAAI Spring Symposium on Machine
Learning in Information Access, Stanford, March 25-27. http://www.parc.xerox.com/ist~
projects/mlia/

200 MACHINE LEARNING

Heckerman, D., Geiger, D., & Chickering, D. (1995) Learning Bayesian networks: The combination
of knowledge and statistical data. Machine Learning, 20, 197. Kluwer Academic Publishers.

Jensen, F. V. (1996). An introduction to Bayesian networks. New York: Springer Verlag.
Joachims, T. (1996). A probabilistic analysis of the Rocchio algorithm with TFIDF for text catego-

rization, (Computer Science Technical Report CMU-CS-96-118). Carnegie Mellon University.
Lang, K. (1995). Newsweeder: Learning to filter netnews. In Prieditis and Russell (Eds.), Proceedings

of the 12th International Conference on Machine Learning (pp. 331-339). San Francisco:
Morgan Kaufmann Publishers.

Lewis, D. (1991). Representation and learning in information retrieval, (Ph.D. thesis), (COINS Tech-
nical Report 91-93). Dept. of Computer and Information Science, University of Massachusetts.

Madigan, D., & Rafferty, A. (1994). ~ o d e l selection and accounting for model uncertainty in graphi-
cal models using Occam's window. Journal of the American Statistical Association, 89, 1535-
1546.

Maisel, L. (1971). Probability, statistics, and random processes. Simon and Schuster Tech Outlines.
New York: Simon and Schuster.

Mehta, M., Rissanen, J., & Agrawal, R. (1995). MDL-based decision tree pruning. In U. M. Fayyard
and R. Uthurusamy (Eds.), Proceedings of the First International Conference on Knowledge
Discovery and Data Mining. Menlo Park, CA: AAAI Press.

Michie, D., Spiegelhalter, D. J., & Taylor, C. C. (1994). Machine learning, neural and statistical
classification, (edited collection). New York: Ellis Horwood.

Opper, M., & Haussler, D. (1991). Generalization performance of Bayes optimal prediction algorithm
for learning a perceptron. Physical Review Letters, 66, 2677-2681.

Pearl, J. (1988). Probabilistic reasoning in intelligent systems: Networks of plausible inference. San
Mateo, CA: Morgan-Kaufmann.

Pradham, M., & Dagum, P. (1996). Optimal Monte Carlo estimation of belief network inference. In
Proceedings of the Conference on Uncertainty in Artijicial Intelligence (pp. 44-53).

Quinlan, J. R., & Rivest, R. (1989). Inferring decision trees using the minimum description length
principle. Information and Computation, 80, 227-248.

Rabiner, L. R. (1989). A tutorial on hidden Markov models and selected applications in speech
recognition. Proceedings of the IEEE, 77(2), 257-286.

Rissanen, J. (1983). A universal prior for integers and estimation by minimum description length.
The Annals of Statistics, 11(2), 41-31.

Rissanen, J., (1989). Stochastic complexity in statistical inquiry. New Jersey: World Scientific Pub.
Rissanen, J. (1991). Information theory and neural nets. IBM Research Report RJ 8438 (76446),

IBM Thomas J. Watson Research Center, Yorktown Heights, NY.
Rocchio, J. (1971). Relevance feedback in information retrieval. In The SMART retrieval system:

Experiments in automatic document processing, (Chap. 14, pp. 313-323). Englewood Cliffs,
NJ: Prentice-Hall.

Russell, S., & Nomig, P. (1995). Artificial intelligence: A modem approach. Englewood Cliffs, NJ:
Prentice-Hall.

Russell, S., Binder, J., Koller, D., & Kanazawa, K. (1995). Local learning in probabilistic networks
with hidden variables. Proceedings of the 14th International Joint Conference on Artificial
Intelligence, Montreal. San Francisco: Morgan Kaufmann.

Salton, G. (1991). Developments in automatic text retrieval. Science, 253, 974-979.
Shannon, C. E., & Weaver, W. (1949). The mathematical theory of communication. Urbana: Univer-

sity of Illinois Press.
Speigel, M. R. (1991). Theory and problems of probability and statistics. Schaum's Outline Series.

New York: McGraw Hill.
Spirtes, P., Glymour, C., & Scheines, R. (1993). Causation, prediction, and search. New York:

Springer Verlag. http://hss.cmu.edu/htmUdepartments/philosophy~~D.BOO~ook.h~

CHAPTER

COMPUTATIONAL
LEARNING

THEORY

This chapter presents a theoretical characterization of the difficulty of several types
of machine learning problems and the capabilities of several types of machine learn-
ing algorithms. This theory seeks to answer questions such as "Under what condi-
tions is successful learning possible and impossible?" and "Under what conditions
is a particular learning algorithm assured of learning successfully?' Two specific
frameworks for analyzing learning algorithms are considered. Within the probably
approximately correct (PAC) framework, we identify classes of hypotheses that can
and cannot be learned from a polynomial number of training examples and we de-
fine a natural measure of complexity for hypothesis spaces that allows bounding
the number of training examples required for inductive learning. Within the mistake
bound framework, we examine the number of training errors that will be made by
a learner before it determines the correct hypothesis.

7.1 INTRODUCTION
When studying machine learning it is natural to wonder what general laws may
govern machine (and nonmachine) learners. Is it possible to identify classes of
learning problems that are inherently difficult or easy, independent of the learning
algorithm? Can one characterize the number of training examples necessary or
sufficient to assure successful learning? How is this number affected if the learner
is allowed to pose queries to the trainer, versus observing a random sample of
training examples? Can one characterize the number of mistakes that a learner

202 MACHINE LEARNING

will make before learning the target function? Can one characterize the inherent
computational complexity of classes of learning problems?

Although general answers to all these questions are not yet known, frag-
ments of a computational theory of learning have begun to emerge. This chapter
presents key results from this theory, providing answers to these questions within
particular problem settings. We focus here on the problem of inductively learning
an unknown target function, given only training examples of this target func-
tion and a space of candidate hypotheses. Within this setting, we will be chiefly
concerned with questions such as how many training examples are sufficient to
successfully learn the target function, and how many mistakes will the learner
make before succeeding. As we shall see, it is possible to set quantitative bounds
on these measures, depending on attributes of the learning problem such as:

0 the size or complexity of the hypothesis space considered by the learner
0 the accuracy to which the target concept must be approximated
0 the probability that the learner will output a successful hypothesis
0 the manner in which training examples are presented to the learner

For the most part, we will focus not on individual learning algorithms, but
rather on broad classes of learning algorithms characterized by the hypothesis
spaces they consider, the presentation of training examples, etc. Our goal is to
answer questions such as:

0 Sample complexity. How many training examples are needed for a learner
to converge (with high probability) to a successful hypothesis?

0 Computational complexity. How much computational effort is needed for a
learner to converge (with high probability) to a successful hypothesis?

0 Mistake bound. How many training examples will the learner misclassify
before converging to a successful hypothesis?

Note there are many specific settings in which we could pursue such ques-
tions. For example, there are various ways to specify what it means for the learner
to be "successful." We might specify that to succeed, the learner must output a
hypothesis identical to the target concept. Alternatively, we might simply require
that it output a hypothesis that agrees with the target concept most of the time, or
that it usually output such a hypothesis. Similarly, we must specify how training
examples are to be obtained by the learner. We might specify that training ex-
amples are presented by a helpful teacher, or obtained by the learner performing
experiments, or simply generated at random according to some process outside
the learner's control. As we might expect, the answers to the above questions
depend on the particular setting, or learning model, we have in mind.

The remainder of this chapter is organized as follows. Section 7.2 introduces
the probably approximately correct (PAC) learning setting. Section 7.3 then an-
alyzes the sample complexity and computational complexity for several learning

CHAPTER 7 COMPUTATIONAL LEARNING THEORY 203

problems within this PAC setting. Section 7.4 introduces an important measure
of hypothesis space complexity called the VC-dimension and extends our PAC
analysis to problems in which the hypothesis space is infinite. Section 7.5 intro-
duces the mistake-bound model and provides a bound on the number of mistakes
made by several learning algorithms discussed in earlier chapters. Finally, we in-
troduce the WEIGHTED-MAJORITY algorithm, a practical algorithm for combining
the predictions of multiple competing learning algorithms, along with a theoretical
mistake bound for this algorithm.

7.2 PROBABLY LEARNING AN APPROXIMATELY CORRECT
HYPOTHESIS
In this section we consider a particular setting for the learning problem, called the
probably approximately correct (PAC) learning model. We begin by specifying
the problem setting that defines the PAC learning model, then consider the ques-
tions of how many training examples and how much computation are required
in order to learn various classes of target functions within this PAC model. For i the sake of simplicity, we restrict the discussion to the case of learning boolean-
valued concepts from noise-free training data. However, many of the results can
be extended to the more general scenario of learning real-valued target functions
(see, for example, Natarajan 1991), and some can be extended to learning from
certain types of noisy data (see, for example, Laird 1988; Kearns and Vazirani
1994).

7.2.1 The Problem Setting
As in earlier chapters, let X refer to the set of all possible instances over which
target functions may be defined. For example, X might represent the set of all
people, each described by the attributes age (e.g., young or old) and height (short
or tall). Let C refer to some set of target concepts that our learner might be called
upon to learn. Each target concept c in C corresponds to some subset of X, or
equivalently to some boolean-valued function c : X + {0, 1). For example, one
target concept c in C might be the concept "people who are skiers." If x is a
positive example of c, then we will write c(x) = 1; if x is a negative example,
c(x) = 0.

We assume instances are generated at random from X according to some
probability distribution D. For example, 2) might be the distribution of instances
generated by observing people who walk out of the largest sports store in Switzer-
land. In general, D may be any distribution, and it will not generally be known
to the learner. All that we require of D is that it be stationary; that is, that the
distribution not change over time. Training examples are generated by drawing
an instance x at random according to D, then presenting x along with its target
value, c(x), to the learner.

The learner L considers some set H of possible hypotheses when attempting
to learn the target concept. For example, H might be the set of all hypotheses

describable by conjunctions of the attributes age and height. After observing
a sequence of training examples of the target concept c, L must output some
hypothesis h from H, which is its estimate of c. To be fair, we evaluate the
success of L by the performance of h over new instances drawn randomly from
X according to D, the same probability distribution used to generate the training
data.

Within this setting, we are interested in characterizing the performance of
various learners L using various hypothesis spaces H, when learning individual
target concepts drawn from various classes C. Because we demand that L be
general enough to learn any target concept from C regardless of the distribution
of training examples, we will often be interested in worst-case analyses over all
possible target concepts from C and all possible instance distributions D.

7.2.2 Error of a Hypothesis
Because we are interested in how closely the learner's output hypothesis h ap-
proximates the actual target concept c, let us begin by defining the true error
of a hypothesis h with respect to target concept c and instance distribution D.
Informally, the true error of h is just the error rate we expect when applying h
to future instances drawn according to the probability distribution 27. In fact, we
already defined the true error of h in Chapter 5. For convenience, we restate the
definition here using c to represent the boolean target function.

Definition: The true error (denoted errorv(h)) of hypothesis h with respect to target
concept c and distribution D is the probability that h will misclassify an instance
drawn at random according to D.

Here the notation Pr indicates that the probability is taken over the instance
x€D

distribution V.
Figure 7.1 shows this definition of error in graphical form. The concepts c

and h are depicted by the sets of instances within X that they label as positive. The
error of h with respect to c is the probability that a randomly drawn instance will
fall into the region where h and c disagree (i.e., their set difference). Note we have
chosen to define error over the entire distribution of instances-not simply over
the training examples-because this is the true error we expect to encounter when
actually using the learned hypothesis h on subsequent instances drawn from D.

Note that error depends strongly on the unknown probability distribution
2). For example, if D is a uniform probability distribution that assigns the same
probability to every instance in X, then the error for the hypothesis in Figure 7.1
will be the fraction of the total instance space that falls into the region where h
and c disagree. However, the same h and c will have a much higher error if D
happens to assign very high probability to instances for which h and c disagree.
In the extreme, if V happens to assign zero probability to the instances for which

Instance space X

C

Where c
and h disagree

FIGURE 7.1
The error of hypothesis h with respect to target concept c. The error of h with respect to c is the
probability that a randomly drawn instance will fall into the region where h and c disagree on its
classification. The + and - points indicate positive and negative training examples. Note h has a
nonzero error with respect to c despite the fact that h and c agree on all five training examples
observed thus far.

h (x) = ~ (x) , then the error for the h in Figure 7.1 will be 1, despite the fact the
h and c agree on a very large number of (zero probability) instances.

Finally, note that the error of h with respect to c is not directly observable to
the learner. L can only observe the performance of h over the training examples,
and it must choose its output hypothesis on this basis only. We will use the term
training error to refer to the fraction of training examples misclassified by h, in
contrast to the true error defined above. Much of our analysis of the complexity of
learning centers around the question "how probable is it that the observed training
error for h gives a misleading estimate of the true errorv(h)?"

Notice the close relationship between this question and the questions con-
sidered in Chapter 5. Recall that in Chapter 5 we defined the sample error of h
with respect to a set S of examples to be the fraction of S rnisclassified by h. The
training error defined above is just the sample error when S is the set of training
examples. In Chapter 5 we determined the probability that the sample error will
provide a misleading estimate of the true error, under the assumption that the data
sample S is drawn independent of h. However, when S is the set of training data,
the learned hypothesis h depends very much on S ! Therefore, in this chapter we
provide an analysis that addresses this important special case.

7.2.3 PAC Learnability
Our aim is to characterize classes of target concepts that can be reliably learned
from a reasonable number of randomly drawn training examples and a reasonable
amount of computation.

What kinds of statements about learnability should we guess hold true?
We might try to characterize the number of training examples needed to learn

a hypothesis h for which errorD(h) = 0. Unfortunately, it turns out this is fu-
tile in the setting we are considering, for two reasons. First, unless we provide
training examples corresponding to every possible instance in X (an unrealistic
assumption), there may be multiple hypotheses consistent with the provided train-
ing examples, and the learner cannot be certain to pick the one corresponding
to the target concept. Second, given that the training examples are drawn ran-
domly, there will always be some nonzero probability that the training examples
encountered by the learner will be misleading. (For example, although we might
frequently see skiers of different heights, on any given day there is some small
chance that all observed training examples will happen to be 2 meters tall.)

To accommodate these two difficulties, we weaken our demands on the
learner in two ways. First, we will not require that the learner output a zero error
hypothesis-we will require only that its error be bounded by some constant, c,
that can be made arbitrarily small. Second, we will not require that the learner
succeed for every sequence of randomly drawn training examples-we will require
only that its probability of failure be bounded by some constant, 6, that can be
made arbitrarily small. In short, we require only that the learner probably learn a
hypothesis that is approximately correct-hence the term probably approximately
correct learning, or PAC learning for short.

Consider some class C of possible target concepts and a learner L using
hypothesis space H. Loosely speaking, we will say that the concept class C
is PAC-learnable by L using H if, for any target concept c in C, L will with
probability (1 - 6) output a hypothesis h with errorv(h) < c, after observing a
reasonable number of training examples and performing a reasonable amount of
computation. More precisely,

Definition: Consider a concept class C defined over a set of instances X of length
n and a learner L using hypothesis space H . C is PAC-learnable by L using H
if for all c E C, distributions D over X, E such that 0 < 6 < 112, and 6 such that
0 < 6 < 112, learner L will with probability at least (1 - 6) output a hypothesis
h E H such that errorv(h) 5 E, in time that is polynomial in 116, 116, n, and
size(c).

Our definition requires two things from L. First, L must, with arbitrarily high
probability (1 - 6) , output a hypothesis having arbitrarily low error (6) . Second, it
must do so efficiently-in time that grows at most polynomially with 1/c and 116,
which define the strength of our demands on the output hypothesis, and with n and
size(c) that define the inherent complexity of the underlying instance space X and
concept class C. Here, n is the size of instances in X. For example, if instances in
X are conjunctions of k boolean features, then n = k. The second space parameter,
size(c), is the encoding length of c in C, assuming some representation for C.
For example, if concepts in C are conjunctions of up to k boolean features, each
described by listing the indices of the features in the conjunction, then size(c) is
the number of boolean features actually used to describe c.

Our definition of PAC learning may at first appear to be concerned only
with the computational resources required for learning, whereas in practice we are

usually more concerned with the number of training examples required. However,
the two are very closely related: If L requires some minimum processing time
per training example, then for C to be PAC-learnable by L, L must learn from a
polynomial number of training examples. In fact, a typical approach to showing
that some class C of target concepts is PAC-learnable, is to first show that each
target concept in C can be learned from a polynomial number of training examples
and then show that the processing time per example is also polynomially bounded.

Before moving on, we should point out a restrictive assumption implicit
in our definition of PAC-learnable. This definition implicitly assumes that the
learner's hypothesis space H contains a hypothesis with arbitrarily small error for
every target concept in C . This follows from the requirement in the above defini-
tion that the learner succeed when the error bound 6 is arbitrarily close to zero. Of
course this is difficult to assure if one does not know C in advance (what is C for
a program that must learn to recognize faces from images?), unless H is taken to
be the power set of X. As pointed out in Chapter 2, such an unbiased H will not
support accurate generalization from a reasonable number of training examples.
Nevertheless, the results based on the PAC learning model provide useful insights / regarding the relative complexity of different learning problems and regarding the
rate at which generalization accuracy improves with additional training examples.
Furthermore, in Section 7.3.1 we will lift this restrictive assumption, to consider
the case in which the learner makes no prior assumption about the form of the
target concept.

7.3 SAMPLE COMPLEXITY FOR FINITE HYPOTHESIS SPACES
As noted above, PAC-learnability is largely determined by the number of training
examples required by the learner. The growth in the number of required training
examples with problem size, called the sample complexity of the learning problem,
is the characteristic that is usually of greatest interest. The reason is that in most
practical settings the factor that most limits success of the learner is the limited
availability of training data.

Here we present a general bound on the sample complexity for a very broad
class of learners, called consistent learners. A learner is consistent if it outputs
hypotheses that perfectly fit the training data, whenever possible. It is quite rea-
sonable to ask that a learning algorithm be consistent, given that we typically
prefer a hypothesis that fits the training data over one that does not. Note that
many of the learning algorithms discussed in earlier chapters, including all the
learning algorithms described in Chapter 2, are consistent learners.

Can we derive a bound on the number of training examples required by
any consistent learner, independent of the specific algorithm it uses to derive a
consistent hypothesis? The answer is yes. To accomplish this, it is useful to recall
the definition of version space from Chapter 2. There we defined the version space,
V S H , D , to be the set of all hypotheses h E H that correctly classify the training
examples D.

v s , ~ = {h E HI(V(x, 4 ~)) E D) (h(x) = ~ (x)) }

The significance of the version space here is that every consistent learner outputs
a hypothesis belonging to the version space, regardless of the instance space X,
hypothesis space H, or training data D. The reason is simply that by definition
the version space VSH,D contains every consistent hypothesis in H. Therefore,
to bound the number of examples needed by any consistent learner, we need only
bound the number of examples needed to assure that the version space contains no
unacceptable hypotheses. The following definition, after Haussler (1988), states
this condition precisely.

Definition: Consider a hypothesis space H, target concept c, instance distribution
V, and set of training examples D of c. The version space V S , , is said to be
€-exhausted with respect to c and V, if every hypothesis h in VSH,* has error less
than 6 with respect to c and V.

This definition is illustrated in Figure 7.2. The version space is €-exhausted
just in the case that all the hypotheses consistent with the observed training ex-
amples (i.e., those with zero training error) happen to have true error less than
E . Of course from the learner's viewpoint all that can be known is that these
hypotheses fit the training data equally well-they all have zero training error.
Only an observer who knew the identity of the target concept could determine
with certainty whether the version space is +exhausted. Surprisingly, a proba-
bilistic argument allows us to bound the probability that the version space will
be €-exhausted after a given number of training examples, even without knowing
the identity of the target concept or the distribution from which training examples

Hypothesis space H

m
error =.3

r =.4

FIGURE 7.2
Exhausting the version space. The version space VSH,D is the subset of hypotheses h E H, which
have zero training error (denoted by r = 0 in the figure). Of course the true errorv(h) (denoted by
error in the figure) may be nonzero, even for hypotheses that commit zero errors over the training
data. The version space is said to be €-exhausted when all hypotheses h remaining in V S H , ~ have
errorw(h) < E .

are drawn. Haussler (1988) provides such a bound, in the form of the following
theorem.

Theorem 7.1. €-exhausting the version space. If the hypothesis space H is finite,
and D is a sequence of rn 1 independent randomly drawn examples of some target
concept c, then for any 0 5 E 5 1, the probability that the version space V S H , ~ is
not €-exhausted (with respect to c) is less than or equal to

Proof. Let h l , h2, . . . hk be all the hypotheses in H that have true error greater than E
with respect to c. We fail to €-exhaust the version space if and only if at least one of
these k hypotheses happens to be consistent with all rn independent random training
examples. The probability that any single hypothesis having true error greater than E

would be consistent with one randomly drawn example is at most (1 - E). Therefore
the probability that this hypothesis will be consistent with rn independently drawn
examples is at most (1 - E) ~ . Given that we have k hypotheses with error greater
than E, the probability that at least one of these will be consistent with all rn training
examples is at most

And since k 5 I H 1, this is at most 1 H I(1- 6)". Finally, we use a general inequality
stating that if 0 5 E 5 1 then (1 - E) 5 e-'. Thus,

which proves the theorem. . O

We have just proved an upper bound on the probability that the version space
is not €-exhausted, based on the number of training examples m, the allowed error
E, and the size of H. Put another way, this bounds the probability that m training
examples will fail to eliminate all "bad" hypotheses (i.e., hypotheses with true
error greater than E) , for any consistent learner using hypothesis space H.

Let us use this result to determine the number of training examples required
to reduce this probability of failure below some desired level 6.

Rearranging terms to solve for m, we find
1

m 2 - (ln 1 HI + ln(l/6))
E

(7.2)

To summarize, the inequality shown in Equation (7.2) provides a general
bound on the number of training examples sufficient for any consistent learner
to successfully learn any target concept in H, for any desired values of 6 and
E. This number rn of training examples is sufficient to assure that any consistent
hypothesis will be probably (with probability (1 - 6)) approximately (within error
E) correct. Notice m grows linearly in 1 / ~ and logarithmically in 116. It also grows
logarithmically in the size of the hypothesis space H .

210 MACHINE LEARNING

Note that the above bound can be a substantial overestimate. For example,
although the probability of failing to exhaust the version space must lie in the
interval [O, 11, the bound given by the theorem grows linearly with IHI. For
sufficiently large hypothesis spaces, this bound can easily be greater than one.
As a result, the bound given by the inequality in Equation (7.2) can substantially
overestimate the number of training examples required. The weakness of this
bound is mainly due to the IHI term, which arises in the proof when summing
the probability that a single hypothesis could be unacceptable, over all possible
hypotheses. In fact, a much tighter bound is possible in many cases, as well as a
bound that covers infinitely large hypothesis spaces. This will be the subject of
Section 7.4.

7.3.1 Agnostic Learning and Inconsistent Hypotheses
Equation (7.2) is important because it tells us how many training examples suffice
to ensure (with probability (1 - 6)) that every hypothesis in H having zero training
error will have a true error of at most E . Unfortunately, if H does not contain
the target concept c, then a zero-error hypothesis cannot always be found. In this
case, the most we might ask of our learner is to output the hypothesis from H
that has the minimum error over the training examples. A learner that makes no
assumption that the target concept is representable by H and that simply finds
the hypothesis with minimum training error, is often called an agnostic learner,
because it makes no prior commitment about whether or not C g H.

Although Equation (7.2) is based on the assumption that the learner outputs
a zero-error hypothesis, a similar bound can be found for this more general case
in which the learner entertains hypotheses with nonzero training error. To state
this precisely, let D denote the particular set of training examples available to
the learner, in contrast to D, which denotes the probability distribution over the
entire set of instances. Let errorD(h) denote the training error of hypothesis h.
In particular, e r ro r~(h) is defined as the fraction of the training examples in
D that are misclassified by h. Note the errorD(h) over the particular sample of
training data D may differ from the true error errorv(h) over the entire probability
distribution 2). Now let hb,,, denote the hypothesis from H having lowest training
error over the training examples. How many training examples suffice to ensure
(with high probability) that its true error errorD(hb,,,) will be no more than
E + errorg (hbest)? Notice the question considered in the previous section is just a
special case of this question, when errorD(hb,,) happens to be zero.

This question can be answered (see Exercise 7.3) using an argument analo-
gous to the proof of Theorem 7.1. It is useful here to invoke the general Hoeffding
bounds (sometimes called the additive Chernoff bounds). The Hoeffding bounds
characterize the deviation between the true probability of some event and its ob-
served frequency over m independent trials. More precisely, these bounds apply
to experiments involving m distinct Bernoulli trials (e.g., m independent flips of a
coin with some probability of turning up heads). This is exactly analogous to the
setting we consider when estimating the error of a hypothesis in Chapter 5: The

CHAPTER 7 COMPUTATIONAL LEARNING THEORY 211

probability of the coin being heads corresponds to the probability that the hypothe-
sis will misclassify a randomly drawn instance. The m independent coin flips corre-
spond to the m independently drawn instances. The frequency of heads over the m
examples corresponds to the frequency of misclassifications over the m instances.

The Hoeffding bounds state that if the training error errOrD(h) is measured
over the set D containing m randomly drawn examples, then

This gives us a bound on the probability that an arbitrarily chosen single hypothesis
has a very misleading training error. To assure that the best hypothesis found by
L has an error bounded in this way, we must consider the probability that any
one of the 1 H 1 hypotheses could have a large error

Pr[(3h E H)(errorv(h) > er ro r~(h) + E)] 5 1 H ~ e - ~ ~ ' ~

If we call this probability 6, and ask how many examples m suffice to hold S to
some desired value, we now obtain

This is the generalization of Equation (7.2) to the case in which the learner still
picks the best hypothesis h E H, but where the best hypothesis may have nonzero
training error. Notice that m depends logarithmically on H and on 116, as it did
in the more restrictive case of Equation (7.2). However, in this less restrictive
situation m now grows as the square of 116, rather than linearly with 116.

7.3.2 Conjunctions of Boolean Literals Are PAC-Learnable
Now that we have a bound indicating the number of training examples sufficient
to probably approximately learn the target concept, we can use it to determine the
sample complexity and PAC-learnability of some specific concept classes.

Consider the class C of target concepts described by conjunctions of boolean
literals. A boolean literal is any boolean variable (e.g., Old), or its negation (e.g.,
-Old). Thus, conjunctions of boolean literals include target concepts such as
"Old A -Tallv. Is C PAC-learnable? We can show that the answer is yes by
first showing that any consistent learner will require only a polynomial number
of training examples to learn any c in C, and then suggesting a specific algorithm
that uses polynomial time per training example.

Consider any consistent learner L using a hypothesis space H identical to C.
We can use Equation (7.2) to compute the number m of random training examples
sufficient to ensure that L will, with probability (1 - S), output a hypothesis with
maximum error E. To accomplish this, we need only determine the size IHI of
the hypothesis space.

Now consider the hypothesis space H defined by conjunctions of literals
based on n boolean variables. The size 1HI of this hypothesis space is 3". To see
this, consider the fact that there are only three possibilities for each variable in

212 MACHINE LEARNING

any given hypothesis: Include the variable as a literal in the hypothesis, include
its negation as a literal, or ignore it. Given n such variables, there are 3" distinct
hypotheses.

Substituting IH I = 3" into Equation (7.2) gives the following bound for the
sample complexity of learning conjunctions of up to n boolean literals.

For example, if a consistent learner attempts to learn a target concept described
by conjunctions of up to 10 boolean literals, and we desire a 95% probability
that it will learn a hypothesis with error less than . l , then it suffices to present m
randomly drawn training examples, where rn = -$ (10 1n 3 + ln(11.05)) = 140.

Notice that m grows linearly in the number of literals n, linearly in 116, and
logarithmically in 116. What about the overall computational effort? That will
depend, of course, on the specific learning algorithm. However, as long as our
learning algorithm requires no more than polynomial computation per training
example, and no more than a polynomial number of training examples, then the
total computation required will be polynomial as well.

In the case of learning conjunctions of boolean literals, one algorithm that
meets this requirement has already been presented in Chapter 2. It is the FIND-S
algorithm, which incrementally computes the most specific hypothesis consistent
with the training examples. For each new positive training example, this algorithm
computes the intersection of the literals shared by the current hypothesis and the
new training example, using time linear in n. Therefore, the FIND-S algorithm
PAC-learns the concept class of conjunctions of n boolean literals with negations.

Theorem 7.2. PAC-learnability of boolean conjunctions. The class C of con-
junctions of boolean literals is PAC-learnable by the FIND-S algorithm using H = C .

Proof. Equation (7.4) shows that the sample complexity for this concept class is
polynomial in n, 116, and 116, and independent of size (c). To incrementally process
each training example, the FIND-S algorithm requires effort linear in n and indepen-
dent of 116, 116, and size(c). Therefore, this concept class is PAC-learnable by the
FIND-S algorithm. 0

7.3.3 PAC-Learnability of Other Concept Classes
As we just saw, Equation (7.2) provides a general basis for bounding the sample
complexity for learning target concepts in some given class C. Above we applied
it to the class of conjunctions of boolean literals. It can also be used to show
that many other concept classes have polynomial sample complexity (e.g., see
Exercise 7.2).

7.3.3.1 UNBIASED LEARNERS

Not all concept classes have polynomially bounded sample complexity according
to the bound of Equation (7.2). For example, consider the unbiased concept class

C that contains every teachable concept relative to X. The set C of all definable
target concepts corresponds to the power set of X-the set of all subsets of X-
which contains ICI = 2IXI concepts. Suppose that instances in X are defined by
n boolean features. In this case, there will be 1x1 = 2" distinct instances, and
therefore ICI = 21'1 = 2' distinct concepts. Of course to learn such an unbiased
concept class, the learner must itself use an unbiased hypothesis space H = C.
Substituting I H I = 22n into Equation (7.2) gives the sample complexity for learning
the unbiased concept class relative to X.

Thus, this unbiased class of target concepts has exponential sample complexity
under the PAC model, according to Equation (7.2). Although Equations (7.2)
and (7.5) are not tight upper bounds, it can in fact be proven that the sample
complexity for the unbiased concept class is exponential in n.

I1

I 7.3.3.2 K-TERM DNF AND K-CNF CONCEPTS I1
It is also possible to find concept classes that have polynomial sample complexity,
but nevertheless cannot be learned in polynomial time. One interesting example is
the concept class C of k-term disjunctive normal form (k-term DNF) expressions.
k-term DNF expressions are of the form TI v T2 v . . - v Tk, where each term 1;:
is a conjunction of n boolean attributes and their negations. Assuming H = C, it
is easy to show that I HI is at most 3"k (because there are k terms, each of which
may take on 3" possible values). Note 3"k is an overestimate of H, because it is
double counting the cases where = I;. and where 1;: is more_general-than I;..
Still, we can use this upper bound on I HI to obtain an upper bound on the sample
complexity, substituting this into Equation (7.2).

which indicates that the sample complexity of k-term DNF is polynomial in
1 / ~ , 116, n, and k. Despite having polynomial sample complexity, the computa-
tional complexity is not polynomial, because this learning problem can be shown
to be equivalent to other problems that are known to be unsolvable in polynomial
time (unless RP = NP). Thus, although k-term DNF has polynomial sample
complexity, it does not have polynomial computational complexity for a learner
using H = C.

The surprising fact about k-term DNF is that although it is not PAC-
learnable, there is a strictly larger concept class that is! This is possible because
the larger concept class has polynomial computation complexity per example and
still has polynomial sample complexity. This larger class is the class of k-CNF
expressions: conjunctions of arbitrary length of the form TI A T2 A . . . A I;., where
each is a disjunction of up to k boolean attributes. It is straightforward to show
that k-CNF subsumes k-DNF, because any k-term DNF expression can easily be

rewritten as a k-CNF expression (but not vice versa). Although k-CNF is more
expressive than k-term DNF, it has both polynomial sample complexity and poly-
nomial time complexity. Hence, the concept class k-term DNF is PAC learnable
by an efficient algorithm using H = k-CNF. See Kearns and Vazirani (1994) for
a more detailed discussion.

7.4 SAMPLE COMPLEXITY FOR INFINITE HYPOTHESIS SPACES
In the above section we showed that sample complexity for PAC learning grows
as the logarithm of the size of the hypothesis space. While Equation (7.2) is quite
useful, there are two drawbacks to characterizing sample complexity in terms of
IHI. First, it can lead to quite weak bounds (recall that the bound on 6 can be
significantly greater than 1 for large I H I). Second, in the case of infinite hypothesis
spaces we cannot apply Equation (7.2) at all!

Here we consider a second measure of the complexity of H, called the
Vapnik-Chervonenkis dimension of H (VC dimension, or VC(H), for short). As
we shall see, we can state bounds on sample complexity that use VC(H) rather
than IHI. In many cases, the sample complexity bounds based on VC(H) will
be tighter than those from Equation (7.2). In addition, these bounds allow us to
characterize the sample complexity of many infinite hypothesis spaces, and can
be shown to be fairly tight.

7.4.1 Shattering a Set of Instances
The VC dimension measures the complexity of the hypothesis space H, not by the
number of distinct hypotheses 1 H 1, but instead by the number of distinct instances
from X that can be completely discriminated using H.

To make this notion more precise, we first define the notion of shattering a
set of instances. Consider some subset of instances S E X. For example, Figure 7.3
shows a subset of three instances from X. Each hypothesis h from H imposes some
dichotomy on S; that is, h partitions S into the two subsets {x E Slh(x) = 1) and
{x E Slh(x) = 0). Given some instance set S, there are 2ISI possible dichotomies,
though H may be unable to represent some of these. We say that H shatters S if
every possible dichotomy of S can be represented by some hypothesis from H.

Definition: A set of instances S is shattered by hypothesis space H if and only if
for every dichotomy.of S there exists some hypothesis in H consistent with this
dichotomy.

Figure 7.3 illustrates a set S of three instances that is shattered by the
hypothesis space. Notice that each of the 23 dichotomies of these three instances
is covered by some hypothesis.

Note that if a set of instances is not shattered by a hypothesis space, then
there must be some concept (dichotomy) that can be defined over the instances,
but that cannot be represented by the hypothesis space. The ability of H to shatter

Instance space X

FIGURE 73
A set of three instances shattered by eight hypotheses. For every possible dichotomy of the instances,
there exists a corresponding hypothesis.

a set .of instances is thus a measure of its capacity to represent target concepts
defined over these instances.

7.4.2 The Vapnik-Chervonenkis Dimension
The ability to shatter a set of instances is closely related to the inductive bias of
a hypothesis space. Recall from Chapter 2 that an unbiased hypothesis space is
one capable of representing every possible concept (dichotomy) definable over the
instance space X. Put briefly, an unbiased hypothesis space H is one that shatters
the instance space X. What if H cannot shatter X, but can shatter some large
subset S of X? Intuitively, it seems reasonable to say that the larger the subset
of X that can be shattered, the more expressive H. The VC dimension of H is
precisely this measure.

Definition: The Vapnik-Chervonenkis dimension, V C (H) , of hypothesis space H
defined over instance space X is the size of the largest finite subset of X shattered
by H . If arbitrarily large finite sets of X can be shattered by H, then V C (H) = oo.

Note that for any finite H, VC(H) 5 log2 IHI. To see this, suppose that
VC(H) = d. Then H will require 2d distinct hypotheses to shatter d instances.
Hence, 2d 5 IHI, andd = VC(H) s l o g 2 (H (.

7.4.2.1 ILLUSTRATIW EXAMPLES

In order to develop an intuitive feeling for VC(H), consider a few example hy-
pothesis spaces. To get started, suppose the instance space X is the set of real
numbers X = 8 (e.g., describing the height of people), and H the set of inter-
vals on the real number line. In other words, H is the set of hypotheses of the

form a < x < b, where a and b may be any real constants. What is VC(H)?
To answer this question, we must find the largest subset of X that can be shat-
tered by H. Consider a particular subset containing two distinct instances, say
S = {3.1,5.7}. Can S be shattered by H? Yes. For example, the four hypotheses
(1 < x < 2), (1 < x < 4), (4 < x < 7), and (1 < x < 7) will do. Together, they
represent each of the four dichotomies over S, covering neither instance, either
one of the instances, and both of the instances, respectively. Since we have found
a set of size two that can be shattered by H, we know the VC dimension of H
is at least two. Is there a set of size three that can be shattered? Consider a set
S = (xo, xl, x2} containing three arbitrary instances. Without loss of generality,
assume xo < xl < x2. Clearly this set cannot be shattered, because the dichotomy
that includes xo and x2, but not XI, cannot be represented by a single closed inter-
val. Therefore, no subset S of size three can be shattered, and VC(H) = 2. Note
here that H is infinite, but VC(H) finite.

Next consider the set X of instances corresponding to points on the x, y plane
(see Figure 7.4). Let H be the set of all linear decision surfaces in the plane. In
other words, H is the hypothesis space corresponding to a single perceptron unit
with two inputs (see Chapter 4 for a general discussion of perceptrons). What
is the VC dimension of this H? It is easy to see that any two distinct points in
the plane can be shattered by H, because we can find four linear surfaces that
include neither, either, or both points. What about sets of three points? As long as
the points are not colinear, we will be able to find 23 linear surfaces that shatter
them. Of course three colinear points cannot be shattered (for the same reason that
the three points on the real line could not be shattered in the previous example).
What is VC(H) in this case-two or three? It is at least three. The definition of
VC dimension indicates that if we find any set of instances of size d that can
be shattered, then VC(H) 2 d. To show that VC(H) < d, we must show that
no set of size d can be shattered. In this example, no sets of size four can be
shattered, so VC(H) = 3. More generally, it can be shown that the VC dimension
of linear decision surfaces in an r dimensional space (i.e., the VC dimension of a
perceptron with r inputs) is r + 1.

As one final example, suppose each instance in X is described by the con-
junction of exactly three boolean literals, and suppose that each hypothesis in H is
described by the conjunction of up to three boolean literals. What is VC(H)? We

FIGURE 7.4
The VC dimension for linear decision surfaces in the x , y plane is 3. (a) A set of three points that
can be shattered using linear decision surfaces. (b) A set of three that cannot be shattered.

can show that it is at least 3, as follows. Represent each instance by a 3-bit string
corresponding to the values of each of its three literals 11, 12, and 13. Consider the
following set of three instances:

This set of three instances can be shattered by H, because a hypothesis
can be constructed for any desired dichotomy as follows: If the dichotomy is to
exclude instancei, add the literal -li to the hypothesis. For example, suppose we
wish to include instance2, but exclude instance1 and instance3. Then we use the
hypothesis -Il A -I3. This argument easily extends from three features to n. Thus,
the VC dimension for conjunctions of n boolean literals is at least n. In fact, it is
exactly n, though showing this is more difficult, because it requires demonstrating
that no set of n + 1 instances can be shattered.

i
7.4.3 Sample Complexity and the VC Dimension
Earlier we considered the question "How many randomly drawn training examples
suffice to probably approximately learn any target concept in C?' (i.e., how many
examples suffice to €-exhaust the version space with probability (1 - a)?). Using
VC(H) as a measure for the complexity of H, it is possible to derive an alternative
answer to this question, analogous to the earlier bound of Equation (7.2). This
new bound (see Blumer et al. 1989) is

Note that just as in the bound from Equation (7.2), the number of required training
examples m grows logarithmically in 118. It now grows log times linear in 116,
rather than linearly. Significantly, the In I HI term in the earlier bound has now
been replaced by the alternative measure of hypothesis space complexity, VC(H)
(recall VC(H) I log2 I H I).

Equation (7.7) provides an upper bound on the number of training examples
sufficient to probably approximately learn any target concept in C, for any desired
t and a. It is also possible to obtain a lower bound, as summarized in the following
theorem (see Ehrenfeucht et al. 1989).

Theorem 7.3. Lower bound on sample complexity. Consider any concept class
C such that V C (C) 2 2, any learner L, and any 0 < E < $, and 0 < S < &. Then
there exists a distribution 23 and target concept in C such that if L observes fewer
examples than

then with probability at least 6, L outputs a hypothesis h having errorD(h) > E.

This theorem states that if the number of training examples is too few, then
no learner can PAC-learn every target concept in any nontrivial C . Thus, this
theorem provides a lower bound on the number of training examples necessary for
successful learning, complementing the earlier upper bound that gives a suficient
number. Notice this lower bound is determined by the complexity of the concept
class C , whereas our earlier upper bounds were determined by H. (why?)+

This lower bound shows that the upper bound of the inequality in Equa-
tion (7.7) is fairly tight. Both bounds are logarithmic in 116 and linear in V C (H) .
The only difference in the order of these two bounds is the extra log(l/c) depen-
dence in the upper bound.

7.4.4 VC Dimension for Neural Networks
Given the discussion of artificial neural network learning in Chapter 4, it is in-
teresting to consider how we might calculate the VC dimension of a network of
interconnected units such as the feedforward networks trained by the BACKPROPA-
GATION procedure. This section presents a general result that allows computing the
VC dimension of layered acyclic networks, based on the structure of the network
and the VC dimension of its individual units. This VC dimension can then be used
to bound the number of training examples sufficient to probably approximately
correctly learn a feedforward network to desired values of c and 6. This section
may be skipped on a first reading without loss of continuity.

Consider a network, G, of units, which forms a layered directed acyclic
graph. A directed acyclic graph is one for which the edges have a direction (e.g.,
the units have inputs and outputs), and in which there are no directed cycles.
A layered graph is one whose nodes can be partitioned into layers such that
all directed edges from nodes at layer 1 go to nodes at layer 1 + 1. The layered
feedforward neural networks discussed throughout Chapter 4 are examples of such
layered directed acyclic graphs.

It turns out that we can bound the VC dimension of such networks based on
their graph structure and the VC dimension of the primitive units from which they
are constructed. To formalize this, we must first define a few more terms. Let n
be the number of inputs to the network G, and let us assume that there is just one
output node. Let each internal unit Ni of G (i.e., each node that is not an input)
have at most r inputs and implement a boolean-valued function ci : 8'' + (0, 1)
from some function class C . For example, if the internal nodes are perceptrons,
then C will be the class of linear threshold functions defined over 8'.

We can now define the G-composition of C to be the class of all functions
that can be implemented by the network G assuming individual units in G take
on functions from the class C . In brief, the G-composition of C is the hypothesis
space representable by the network G.

t ~ i n t : If we were to substitute H for C in the lower bound, this would result in a tighter bound on
m in the case H > C.

The following theorem bounds the VC dimension of the G-composition of
C, based on the VC dimension of C and the structure of G.

Theorem 7.4. VC-dimension of directed acyclic layered networks. (See Kearns
and Vazirani 1994.) Let G be a layered directed acyclic graph with n input nodes
and s 2 2 internal nodes, each having at most r inputs. Let C be a concept class over
8Y of VC dimension d, corresponding to the set of functions that can be described
by each of the s internal nodes. Let CG be the G-composition of C, corresponding
to the set of functions that can be represented by G. Then VC(CG) 5 2dslog(es),
where e is the base of the natural logarithm.

Note this bound on the VC dimension of the network G grows linearly with
the VC dimension d of its individual units and log times linear in s, the number
of threshold units in the network.

Suppose we consider acyclic layered networks whose individual nodes are
perceptrons. Recall from Chapter 4 that an r input perceptron uses linear decision
surfaces to represent boolean functions over %'. As noted in Section 7.4.2.1, the
VC dimension of linear decision surfaces over is r + 1. Therefore, a single
perceptron with r inputs has VC dimension r + 1. We can use this fact, together
with the above theorem, to bound the VC dimension of acyclic layered networks
containing s perceptrons, each with r inputs, as

We can now bound the number m of training examples sufficient to learn
perceptrons (with probability at least (1 - 6)) any target concept from C, to within

error E . Substituting the above expression for the network VC dimension into
Equation (7.7), we have

As illustrated by this perceptron network example, the above theorem is
interesting because it provides a general method for bounding the VC dimension
of layered, acyclic networks of units, based on the network structure and the VC
dimension of the individual units. Unfortunately the above result does not directly
apply to networks trained using BACKPROPAGATION, for two reasons. First, this
result applies to networks of perceptrons rather than networks of sigmoid units
to which the BACKPROPAGATION algorithm applies. Nevertheless, notice that the
VC dimension of sigmoid units will be at least as great as that of perceptrons,
because a sigmoid unit can approximate a perceptron to arbitrary accuracy by
using sufficiently large weights. Therefore, the above bound on m will be at least
as large for acyclic layered networks of sigmoid units. The second shortcoming
of the above result is that it fails to account for the fact that BACKPROPAGATION

220 MACHINE LEARNING

trains a network by beginning with near-zero weights, then iteratively modifying
these weights until an acceptable hypothesis is found. Thus, BACKPROPAGATION
with a cross-validation stopping criterion exhibits an inductive bias in favor of
networks with small weights. This inductive bias, which reduces the effective VC
dimension, is not captured by the above analysis.

7.5 THE MISTAKE BOUND MODEL OF LEARNING
While we have focused thus far on the PAC learning model, computational learn-
ing theory considers a variety of different settings and questions. Different learning
settings that have been studied vary by how the training examples are generated
(e.g., passive observation of random examples, active querying by the learner),
noise in the data (e.g., noisy or error-free), the definition of success (e.g., the
target concept must be learned exactly, or only probably and approximately), as-
sumptions made by the learner (e.g., regarding the distribution of instances and
whether C G H), and the measure according to which the learner is evaluated
(e.g., number of training examples, number of mistakes, total time).

In this section we consider the mistake bound model of learning, in which
the learner is evaluated by the total number of mistakes it makes before it con-
verges to the correct hypothesis. As in the PAC setting, we assume the learner
receives a sequence of training examples. However, here we demand that upon
receiving each example x, the learner must predict the target value c(x), before
it is shown the correct target value by the trainer. The question considered is
"How many mistakes will the learner make in its predictions before it learns the
target concept?' This question is significant in practical settings where learning
must be done while the system is in actual use, rather than during some off-line
training stage. For example, if the system is to learn to predict which credit card
purchases should be approved and which are fraudulent, based on data collected
during use, then we are interested in minimizing the total number of mistakes it
will make before converging to the correct target function. Here the total num-
ber of mistakes can be even more important than the total number of training
examples.

This mistake bound learning problem may be studied in various specific
settings. For example, we might count the number of mistakes made before PAC
learning the target concept. In the examples below, we consider instead the number
of mistakes made before learning the target concept exactly. Learning the target
concept exactly means converging to a hypothesis such that (Vx)h(x) = c(x).

7.5.1 Mistake Bound for the FIND-S Algorithm
To illustrate, consider again the hypothesis space H consisting of conjunctions of
up to n boolean literals 11 . . .1, and their negations (e.g., Rich A -Handsome).
Recall the FIND-S algorithm from Chapter 2, which incrementally computes the
maximally specific hypothesis consistent with the training examples. A straight-
forward implementation of FIND-S for the hypothesis space H is as follows:

CHAPTER 7 COMPUTATIONAL LEARNING THEORY 221

FIND-S:
0 Initialize h to the most specific hypothesis l1 A -II A 12 A -12.. .1, A -1,
0 For each positive training instance x

0 Remove from h any literal that is not satisfied by x
0 Output hypothesis h.

FIND-S converges in the limit to a hypothesis that makes no errors, provided
C H and provided the training data is noise-free. FIND-S begins with the most
specific hypothesis (which classifies every instance a negative example), then
incrementally generalizes this hypothesis as needed to cover observed positive
training examples. For the hypothesis representation used here, this generalization
step consists of deleting unsatisfied literals.

Can we prove a bound on the total number of mistakes that FIND-S will make
before exactly learning the target concept c? The answer is yes. To see this, note
first that if c E H, then FIND-S can never mistakenly classify a negative example as
positive. The reason is that its current hypothesis h is always at least as specific as 1 the target concept e. Therefore, to calculate the number of mistakes it will make,
we need only count the number of mistakes it will make misclassifying truly
positive examples as negative. How many such mistakes can occur before FIND-S
learns c exactly? Consider the first positive example encountered by FIND-S. The
learner will certainly make a mistake classifying this example, because its initial
hypothesis labels every instance negative. However, the result will be that half
of the 2n terms in its initial hypothesis will be eliminated, leaving only n terms.
For each subsequent positive example that is mistakenly classified by the current
hypothesis, at least one more of the remaining n terms must be eliminated from
the hypothesis. Therefore, the total number of mistakes can be at most n + 1. This
number of mistakes will be required in the worst case, corresponding to learning
the most general possible target concept (Vx)c(x) = 1 and corresponding to a
worst case sequence of instances that removes only one literal per mistake.

7.5.2 Mistake Bound for the HALVING Algorithm
As a second example, consider an algorithm that learns by maintaining a descrip-
tion of the version space, incrementally refining the version space as each new
training example is encountered. The CANDIDATE-ELIMINATION algorithm and the
LIST-THEN-ELIMINATE algorithm from Chapter 2 are examples of such algorithms.
In this section we derive a worst-case bound on the number of mistakes that will
be made by such a learner, for any finite hypothesis space H, assuming again that
the target concept must be learned exactly.

To analyze the number of mistakes made while learning we must first specify
precisely how the learner will make predictions given a new instance x. Let us
assume this prediction is made by taking a majority vote among the hypotheses in
the current version space. If the majority of version space hypotheses classify the
new instance as positive, then this prediction is output by the learner. Otherwise
a negative prediction is output.

222 MACHINE LEARNING

This combination of learning the version space, together with using a ma-
jority vote to make subsequent predictions, is often called the HALVING algorithm.
What is the maximum number of mistakes that can be made by the HALVING
algorithm, for an arbitrary finite H, before it exactly learns the target concept?
Notice that learning the target concept "exactly" corresponds to reaching a state
where the version space contains only a single hypothesis (as usual, we assume
the target concept c is in H).

To derive the mistake bound, note that the only time the HALVING algorithm
can make a mistake is when the majority of hypotheses in its current version space
incorrectly classify the new example. In this case, once the correct classification is
revealed to the learner, the version space will be reduced to at most half its current
size (i.e., only those hypotheses that voted with the minority will be retained).
Given that each mistake reduces the size of the version space by at least half,
and given that the initial version space contains only I H I members, the maximum
number of mistakes possible before the version space contains just one member
is log2 I H I. In fact one can show the bound is Llog, I H (1. Consider, for example,
the case in which IHI = 7. The first mistake must reduce IHI to at most 3, and
the second mistake will then reduce it to 1.

Note that [log2 IH(1 is a worst-case bound, and that it is possible for the
HALVING algorithm to learn the target concept exactly without making any mis-
takes at all! This can occur because even when the majority vote is correct, the
algorithm will remove the incorrect, minority hypotheses. If this occurs over the
entire training sequence, then the version space may be reduced to a single member
while making no mistakes along the way.

One interesting extension to the HALVING algorithm is to allow the hy-
potheses to vote with different weights. Chapter 6 describes the Bayes optimal
classifier, which takes such a weighted vote among hypotheses. In the Bayes op-
timal classifier, the weight assigned to each hypothesis is the estimated posterior
probability that it describes the target concept, given the training data. Later in
this section we describe a different algorithm based on weighted voting, called
the WEIGHTED-MAJORITY algorithm.

7.5.3 Optimal Mistake Bounds
The above analyses give worst-case mistake bounds for two specific algorithms:
FIND-S and CANDIDATE-ELIMINATION. It is interesting to ask what is the optimal
mistake bound for an arbitrary concept class C, assuming H = C. By optimal
mistake bound we mean the lowest worst-case mistake bound over all possible
learning algorithms. To be more precise, for any learning algorithm A and any
target concept c, let MA(c) denote the maximum over all possible sequences of
training examples of the number of mistakes made by A to exactly learn c. Now
for any nonempty concept class C, let MA(C) - max,,~ MA(c). Note that above
we showed MFindPS(C) = n + 1 when C is the concept class described by up
to n boolean literals. We also showed MHalving(C) 5 log2((CI) for any concept
class C.

We define the optimal mistake bound for a concept class C below.

Definition: Let C be an arbitrary nonempty concept class. The optimal mistake
bound for C , denoted Opt (C) , is the minimum over all possible learning algorithms
A of MA(C).

Opt (C) = min
Adearning algorithms

MA (a

Speaking informally, this definition states that Opt(C) is the number of
mistakes made for the hardest target concept in C, using the hardest training
sequence, by the best algorithm. Littlestone (1987) shows that for any concept
class C, there is an interesting relationship among the optimal mistake bound for
C, the bound of the HALVING algorithm, and the VC dimension of C, namely

Furthermore, there exist concept classes for which the four quantities above
are exactly equal. One such concept class is the powerset Cp of any finite set
of instances X. In this case, VC(Cp) = 1x1 = log2(1CpJ), so all four quantities
must be equal. Littlestone (1987) provides examples of other concept classes for
which VC(C) is strictly less than Opt (C) and for which Opt (C) is strictly less
than M~aIvin~(C)

7.5.4 WEIGHTED-MAJORITY Algorithm
In this section we consider a generalization of the HALVING algorithm called
the WEIGHTED-MAJORITY algorithm. The WEIGHTED-MAJORITY algorithm makes
predictions by taking a weighted vote among a pool of prediction algorithms and
learns by altering the weight associated with each prediction algorithm. These
prediction algorithms can be taken to be the alternative hypotheses in H, or they
can be taken to be alternative learning algorithms that themselves vary over time.
All that we require of a prediction algorithm is that it predict the value of the target
concept, given an instance. One interesting property of the WEIGHTED-MAJORITY
algorithm is that it is able to accommodate inconsistent training data. This is
because it does not eliminate a hypothesis that is found to be inconsistent with
some training example, but rather reduces its weight. A second interesting property
is that we can bound the number of mistakes made by WEIGHTED-MAJORITY in
terms of the number of mistakes committed by the best of the pool of prediction
algorithms.

The WEIGHTED-MAJORITY algorithm begins by assigning a weight of 1 to
each prediction algorithm, then considers the training examples. Whenever a pre-
diction algorithm misclassifies a new training example its weight is decreased by
multiplying it by some number B, where 0 5 B < 1. The exact definition of the
WEIGHTED-MAJORITY algorithm is given in Table 7.1.

Notice if f? = 0 then WEIGHTED-MAJORITY is identical to the HALVING al-
gorithm. On the other hand, if we choose some other value for p, no prediction

ai denotes the if* prediction algorithm in the pool A of algorithms. wi denotes the weight associated
with ai.

For all i initialize wi c 1
For each training example (x, c(x))

c Initialize qo and ql to 0
am For each prediction algorithm ai

c If ai(x) = O then qo t q0 +wi
If ai(x) = 1 then ql c ql + wi

If ql > qo then predict c(x) = 1
If qo > q1 then predict c(x) = 0
If ql = qo then predict 0 or 1 at random for c(x)
For each prediction algorithm ai in A do

If ai(x) # c(x) then wi +- Buri

TABLE 7.1
WEIGHTED-MAJORITY algorithm.

algorithm will ever be eliminated completely. If an algorithm misclassifies a train-
ing example, it will simply receive a smaller vote in the future.

We now show that the number of mistakes committed by the WEIGHTED-
MAJORITY algorithm can be bounded in terms of the number of mistakes made by
the best prediction algorithm in the voting pool.

Theorem 7.5. Relative mistake bound for WEIGHTED-MAJORITY. Let D be any
sequence of training examples, let A be any set of n prediction algorithms, and let
k be the minimum number of mistakes made by any algorithm in A for the training
sequence D. Then the number of mistakes over D made by the WEIGHTED-MAJORITY
algorithm using /3 = 4 is at most

2.4(k + log, n)

Proof. We prove the theorem by comparing the final weight of the best prediction
algorithm to the sum of weights over all algorithms. Let aj denote an algorithm from
A that commits the optimal number k of mistakes. The final weight wj associated
with aj will be because its initial weight is 1 and it is multiplied by 3 for each
mistake. Now consider the sum W = x : = , wi of the weights associated with all n
algorithms in A. W is initially n. For each mistake made by WEIGHTED-MAJORITY,
W is reduced to at most :w. This is the case because the algorithms voting in the
weighted majority must hold at least half of the total weight W , and this portion
of W will be reduced by a factor of 4. Let M denote the total number of mistakes
committed by WEIGHTED-MAJORITY for the training sequence D. Then the final total
weight W is at most n(: lM. Because the final weight wj cannot be greater than the
final total weight, we have

Rearranging terms yields

M 5 (k + log' n, 2.4(k + log, n)
-1% (a) -

which proves the theorem.

To summarize, the above theorem states that the number of mistakes made
by the WEIGHTED-MAJORITY algorithm will never be greater than a constant factor
times the number of mistakes made by the best member of the pool, plus a term
that grows only logarithmically in the size of the pool.

This theorem is generalized by Littlestone and Warmuth (1991), who show
that for an arbitrary 0 5 j3 < 1 the above bound is

/ 7.6 SUMMARY AND FURTHER READING
The main points of this chapter include:

0 The probably approximately correct (PAC) model considers algorithms that
learn target concepts from some concept class C, using training examples
drawn at random according to an unknown, but fixed, probability distribu-
tion. It requires that the learner probably (with probability at least [l - 61)
learn a hypothesis that is approximately (within error E) correct, given com-
putational effort and training examples that grow only polynornially with
I/€, 1/6, the size of the instances, and the size of the target concept.

0 Within the setting of the PAC learning model, any consistent learner using
a finite hypothesis space H where C H will, with probability (1 - S),
output a hypothesis within error E of the target concept, after observing m
randomly drawn training examples, as long as

This gives a bound on the number of training examples sufficient for suc-
cessful learning under the PAC model.
One constraining assumption of the PAC learning model is that the learner
knows in advance some restricted concept class C that contains the target
concept to be learned. In contrast, the agnostic learning model considers the
more general setting in which the learner makes no assumption about the
class from which the target concept is drawn. Instead, the learner outputs
the hypothesis from H that has the least error (possibly nonzero) over the
training data. Under this less restrictive agnostic learning model, the learner
is assured with probability (1 -6) to output a hypothesis within error E of the

best possible hypothesis in H, after observing rn randomly drawn training
examples, provided

a The number of training examples required for successful learning is strongly
influenced by the complexity of the hypothesis space considered by the
learner. One useful measure of the complexity of a hypothesis space H
is its Vapnik-Chervonenkis dimension, VC(H). VC(H) is the size of the
largest subset of instances that can be shattered (split in all possible ways)
by H.

a An alternative upper bound on the number of training examples sufficient
for successful learning under the PAC model, stated in terms of VC(H) is

A lower bound is

a An alternative learning model, called the mistake bound model, is used to
analyze the number of training examples a learner will misclassify before
it exactly learns the target concept. For example, the HALVING algorithm
will make at most Llog, 1 H 1 J mistakes before exactly learning any target
concept drawn from H. For an arbitrary concept class C , the best worst-
case algorithm will make Opt (C) mistakes, where

VC(C> 5 Opt(C) I log,(lCI)
a The WEIGHTED-MAJORITY algorithm combines the weighted votes of multiple

prediction algorithms to classify new instances. It learns weights for each of
these prediction algorithms based on errors made over a sequence of exam-
ples. Interestingly, the number of mistakes made by WEIGHTED-MAJORITY can
be bounded in terms of the number of mistakes made by the best prediction
algorithm in the pool.

Much early work on computational learning theory dealt with the question
of whether the learner could identify the target concept in the limit, given an
indefinitely long sequence of training examples. The identification in the limit
model was introduced by Gold (1967). A good overview of results in this area is
(Angluin 1992). Vapnik (1982) examines in detail the problem of uniform con-
vergence, and the closely related PAC-learning model was introduced by Valiant
(1984). The discussion in this chapter of €-exhausting the version space is based
on Haussler's (1988) exposition. A useful collection of results under the PAC
model can be found in Blumer et al. (1989). Kearns and Vazirani (1994) pro-
vide an excellent exposition of many results from computational learning theory.
Earlier texts in this area include Anthony and Biggs (1992) and Natarajan (1991).

Current research on computational learning theory covers a broad range of
learning models and learning algorithms. Much of this research can be found
in the proceedings of the annual conference on Computational Learning Theory
(COLT). Several special issues of the journal Machine Learning have also been
devoted to this topic.

EXERCISES
7.1. Consider training a two-input perceptron. Give an upper bound on the number of

training examples sufficient to assure with 90% confidence that the learned percep-
tron will have true error of at most 5%. Does this bound seem realistic?

7.2. Consider the class C of concepts of the form (a 4 x 5 b) ~ (c 5 y 5 d), where a , b, c ,
and d are integers in the interval (0,99). Note each concept in this class corresponds
to a rectangle with integer-valued boundaries on a portion of the x , y plane. Hint:
Given a region in the plane bounded by the points (0,O) and (n - 1 , n - I), the
number of distinct rectangles with integer-valued boundaries within this region is
(" M) 2 .

2 i (a) Give an upper bound on the number of randomly drawn training examples
sufficient to assure that for any target concept c in C, any consistent learner
using H = C will, with probability 95%, output a hypothesis with error at
most .15.

(b) Now suppose the rectangle boundaries a , b, c, and d take on real values instead
of integer values. Update your answer to the first part of this question.

7.3. In this chapter we derived an expression for the number of training examples suf-
ficient to ensure that every hypothesis will have true error no worse than 6 plus
its observed training error errorD(h). In particular, we used Hoeffding bounds to
derive Equation (7.3). Derive an alternative expression for the number of training
examples sufficient to ensure that every hypothesis will have true error no worse
than (1 + y)errorD(h). You can use the general Chernoff bounds to derive such a
result.

Chernoff bounds: Suppose X I , . . . , Xm are the outcomes of rn independent
coin flips (Bernoulli trials), where the probability of heads on any single trial is
Pr[Xi = 11 = p and the probability of tails is Pr[Xi = 01 = 1 - p. Define S =
XI + X2 + - . - + Xm to be the sum of the outcomes of these m trials. The expected
value of S/m is E[S/m] = p. The Chernoff bounds govern the probability that S/m
will differ from p by some factor 0 5 y 5 1 .

7.4. Consider a learning problem in which X = % is the set of real numbers, and C = H
is the set of intervals over the reals, H = { (a < x < b) I a , b E E}. What is the
probability that a hypothesis consistent with m examples of this target concept will
have error at least E? Solve this using the VC dimension. Can you find a second
way to solve this, based on first principles and ignoring the VC dimension?

7.5. Consider the space of instances X corresponding to all points in the x , y plane. Give
the VC dimension of the following hypothesis spaces:
(a) H, = the set of all rectangles in the x , y plane. That is, H = {((a < x < b) ~ (c <

Y -= d))la, b, c, d E W.
(b) H, = circles in the x , y plane. Points inside the circle are classified as positive

examples
(c) H, =triangles in the x , y plane. Points inside the triangle are classified as positive

examples
7.6. Write a consistent learner for Hr from Exercise 7.5. Generate a variety of target

concept rectangles at random, corresponding to different rectangles in the plane.
Generate random examples of each of these target concepts, based on a uniform
distribution of instances within the rectangle from (0,O) to (100, 100). Plot the
generalization error as a function of the number of training examples, m. On the
same graph, plot the theoretical relationship between 6 and m, for 6 = .95. Does
theory fit experiment?

7.7. Consider the hypothesis class Hrd2 of "regular, depth-2 decision trees" over n
Boolean variables. A "regular, depth-2 decision tree" is a depth-2 decision tree (a
tree with four leaves, all distance 2 from the root) in which the left and right child
of the root are required to contain the same variable. For instance, the following
tree is in HrdZ.

x3
/ \

xl xl
/ \ / \

+ - - +
(a) As a function of n, how many syntactically distinct trees are there in HrdZ?
(b) Give an upper bound for the number of examples needed in the PAC model to

learn Hrd2 with error 6 and confidence 6.
(c) Consider the following WEIGHTED-MAJORITY algorithm, for the class Hrd2. YOU

begin with all hypotheses in Hrd2 assigned an initial weight equal to 1. Every
time you see a new example, you predict based on a weighted majority vote over
all hypotheses in Hrd2. Then, instead of eliminating the inconsistent trees, you cut
down their weight by a factor of 2. How many mistakes will this procedure make
at most, as a function of n and the number of mistakes of the best tree in Hrd2?

7.8. This question considers the relationship between the PAC analysis considered in this
chapter and the evaluation of hypotheses discussed in Chapter 5. Consider a learning
task in which instances are described by n boolean variables (e.g., xl A& AX^ . . . f,)
and are drawn according to a fixed but unknown probability distribution V. The
target concept is known to be describable by a conjunction of boolean attributes and
their negations (e.g., xz A&), and the learning algorithm uses this concept class as its
hypothesis space H . A consistent learner is provided a set of 100 training examples
drawn according to V. It outputs a hypothesis h from H that is consistent with all
100 examples (i.e., the error of h over these training examples is zero).
(a) We are interested in the true error of h , that is, the probability that it will

misclassify future instances drawn randomly according to V. Based on the above
information, can you give an interval into which this true error will fall with
at least 95% probability? If so, state it and justify it briefly. If not, explain the
difficulty.

(b) You now draw a new set of 100 instances, drawn independently according to the
same distribution D. You find that h misclassifies 30 of these 100 new examples.
Can you give an interval into which this true error will fall with approximately
95% probability? (Ignore the performance over the earlier training data for this
part.) If so, state it and justify it briefly. If not, explain the difficulty.

(c) It may seem a bit odd that h misclassifies 30% of the new examples even though
it perfectly classified the training examples. Is this event more likely for large
n or small n? Justify your answer in a sentence.

REFERENCES
Angluin, D. (1992). Computational learning theory: Survey and selected bibliography. Proceedings

of the Twenty-Fourth Annual ACM Symposium on Theory of Computing (pp. 351-369). ACM
Press.

Angluin, D., Frazier, M., & Pitt, L. (1992). Learning conjunctions of horn clauses. Machine Learning,
9, 147-164.

Anthony, M., & Biggs, N. (1992). Computational learning theory: An introduction. Cambridge,
England: Cambridge University Press.

Blumer, A., Ehrenfeucht, A., Haussler, D., & Warmuth, M. (1989). Learnability and the Vapnik-
Chemonenkis dimension. Journal of the ACM, 36(4) (October), 929-965.

Ehrenfeucht, A., Haussler, D., Kearns, M., & Valiant, L. (1989). A general lower bound on the
number of examples needed for learning. Informution and computation, 82, 247-261.

Gold, E. M. (1967). Language identification in the limit. Information and Control, 10, 447-474.
Goldman, S. (Ed.). (1995). Special issue on computational learning theory. Machine Learning,

18(2/3), February.
Haussler, D. (1988). Quantifying inductive bias: A1 learning algorithms and Valiant's learning frame-

work. ArtGcial Intelligence, 36, 177-221.
Kearns, M. J., & Vazirani, U. V. (1994). An introduction to computational learning theory. Cambridge,

MA: MIT Press.
Laird, P. (1988). Learning from good and bad data. Dordrecht: Kluwer Academic Publishers.
Li, M., & Valiant, L. G. (Eds.). (1994). Special issue on computational learning theory. Machine

Learning, 14(1).
Littlestone, N. (1987). Learning quickly when irrelevant attributes abound: A new linear-threshold

algorithm. Machine Learning, 2, 285-318.
Littlestone, N., & Warmuth, M. (1991). The weighted majority algorithm (Technical report UCSC-

CRL-91-28). Univ. of California Santa Cruz, Computer Engineering and Information Sciences
Dept., Santa Cruz, CA.

Littlestone, N., & Warmuth, M. (1994). The weighted majority algorithm. Information and Compu-
tation (log), 212-261.

Pltt, L. (Ed.). (1990). Special issue on computational learning theory. Machine Learning, 5(2).
Natarajan, B. K. (1991). Machine learning: A theoretical approach. San Mateo, CA: Morgan Kauf-

mann.
Valiant, L. (1984). A theory of the learnable. Communications of the ACM, 27(1 I), 1134-1 142.
Vapnik, V. N. (1982). Estimation of dependences based on empirical data. New York: Springer-

Verlag.
Vapnik, V. N., & Chervonenkis, A. (1971). On the uniform convergence of relative frequencies of

events to their probabilities. Theory of Probability and Its Applications, 16, 264-280.

CHAPTER

INSTANCE-BASED
LEARNING

In contrast to learning methods that construct a general, explicit description of
the target function when training examples are provided, instance-based learning
methods simply store the training examples. Generalizing beyond these examples
is postponed until a new instance must be classified. Each time a new query
instance is encountered, its relationship to the previously stored examples is ex-
amined in order to assign a target function value for the new instance. Instance-
based learning includes nearest neighbor and locally weighted regression meth-
ods that assume instances can be represented as points in a Euclidean space. It
also includes case-based reasoning methods that use more complex, symbolic rep-
resentations for instances. Instance-based methods are sometimes referred to as
"lazy" learning methods because they delay processing until a new instance must
be classified. A key advantage of this kind of delayed, or lazy, learning is
that instead of estimating the target function once for the entire instance space,
these methods can estimate it locally and differently for each new instance to be
classified.

8.1 INTRODUCTION
Instance-based learning methods such as nearest neighbor and locally weighted re-
gression are conceptually straightforward approaches to approximating real-valued
or discrete-valued target functions. Learning in these algorithms consists of simply
storing the presented training data. When a new query instance is encountered, a
set of similar related instances is retrieved from memory and used to classify the

CHAPTER 8 INSTANCE-BASED LEARNING 231

new query instance. One key difference between these approaches and the meth-
ods discussed in other chapters is that instance-based approaches can construct
a different approximation to the target function for each distinct query instance
that must be classified. In fact, many techniques construct only a local approxi-
mation to the target function that applies in the neighborhood of the new query
instance, and never construct an approximation designed to perform well over the
entire instance space. This has significant advantages when the target function is
very complex, but can still be described by a collection of less complex local
approximations.

Instance-based methods can also use more complex, symbolic representa-
tions for instances. In case-based learning, instances are represented in this fashion
and the process for identifying "neighboring" instances is elaborated accordingly.
Case-based reasoning has been applied to tasks such as storing and reusing past
experience at a help desk, reasoning about legal cases by referring to previous
cases, and solving complex scheduling problems by reusing relevant portions of
previously solved problems.

One disadvantage of instance-based approaches is that the cost of classifying
new instances can be high. This is due to the fact that nearly all computation
takes place at classification time rather than when the training examples are first
encountered. Therefore, techniques for efficiently indexing training examples are
a significant practical issue in reducing the computation required at query time.
A second disadvantage to many instance-based approaches, especially nearest-
neighbor approaches, is that they typically consider all attributes of the instances
when attempting to retrieve similar training examples from memory. If the target
concept depends on only a few of the many available attributes, then the instances
that are truly most "similar" may well be a large distance apart.

In the next section we introduce the k-NEAREST NEIGHBOR learning algo-
rithm, including several variants of this widely-used approach. The subsequent
section discusses locally weighted regression, a learning method that constructs
local approximations to the target function and that can be viewed as a general-
ization of k-NEAREST NEIGHBOR algorithms. We then describe radial basis function
networks, which provide an interesting bridge between instance-based and neural
network learning algorithms. The next section discusses case-based reasoning, an
instance-based approach that employs symbolic representations and knowledge-
based inference. This section includes an example application of case-based rea-
soning to a problem in engineering design. Finally, we discuss the fundarnen-
tal differences in capabilities that distinguish lazy learning methods discussed in
this chapter from eager learning methods discussed in the other chapters of this
book.

8.2 k-NEAREST NEIGHBOR LEARNING
The most basic instance-based method is the k-NEAREST NEIGHBOR algorithm. This
algorithm assumes all instances correspond to points in the n-dimensional space
8". The nearest neighbors of an instance are defined in terms of the standard

I

Euclidean distance. More precisely, let an arbitrary instance x be described by the
feature vector

where ar (x) denotes the value of the rth attribute of instance x . Then the distance
between two instances xi and xj is defined to be d (x i , x j) , where

In nearest-neighbor learning the target function may be either discrete-valued
or real-valued. Let us first consider learning discrete-valued target functions of the
form f : W -+ V, where V is the finite set {vl, . . . v,}. The k-NEAREST NEIGHBOR
algorithm for approximatin5 a discrete-valued target function is given in Table 8.1.
As shown there, the value f (x ,) returned by this algorithm as its estimate of f (x ,)
is just the most common value of f among the k training examples nearest to
x,. If we choose k = 1, then the 1-NEAREST NEIGHBOR algorithm assigns to f (x ,)
the value f (x i) where xi is the training instance nearest to x, . For larger values
of k, the algorithm assigns the most common value among the k nearest training
examples.

Figure 8.1 illustrates the operation of the k-NEAREST NEIGHBOR algorithm for
the case where the instances are points in a two-dimensional space and where the
target function is boolean valued. The positive and negative training examples are
shown by "+" and "-" respectively. A query point x , is shown as well. Note the
1-NEAREST NEIGHBOR algorithm classifies x, as a positive example in this figure,
whereas the 5-NEAREST NEIGHBOR algorithm classifies it as a negative example.

What is the nature of the hypothesis space H implicitly considered by the
k-NEAREST NEIGHBOR algorithm? Note the k-NEAREST NEIGHBOR algorithm never
forms an explicit general hypothesis f regarding the target function f . It simply
computes the classification of each new query instance as needed. Nevertheless,

Training algorithm:
For each training example (x , f (x)) , add the example to the list trainingaxamples

Classification algorithm:
Given a query instance xq to be classified,

Let xl . . .xk denote the k instances from trainingaxamples that are nearest to xq
Return

G

where S(a, b) = 1 if a = b and where 6(a , b) = 0 otherwise.

TABLE 8.1
The k-NEAREST NEIGHBOR algorithm for approximating a discrete-valued function f : 8" -+ V .

CHAPTER 8 INSTANCE-BASED LEARNING 233

FIGURE 8.1
k-NEAREST NEIGHBOR. A set of positive and negative training examples is shown on the left, along
with a query instance x, to be classified. The I-NEAREST NEIGHBOR algorithm classifies x, positive,
whereas 5-NEAREST NEIGHBOR classifies it as negative. On the right is the decision surface induced
by the 1-NEAREST NEIGHBOR algorithm for a typical set of training examples. The convex polygon
surrounding each training example indicates the region of instance space closest to that point (i.e.,
the instances for which the 1-NEAREST NEIGHBOR algorithm will assign the classification belonging
to that training example).

we can still ask what the implicit general function is, or what classifications
would be assigned if we were to hold the training examples constant and query
the algorithm with every possible instance in X. The diagram on the right side
of Figure 8.1 shows the shape of this decision surface induced by 1-NEAREST
NEIGHBOR over the entire instance space. The decision surface is a combination of
convex polyhedra surrounding each of the training examples. For every training
example, the polyhedron indicates the set of query points whose classification
will be completely determined by that training example. Query points outside the
polyhedron are closer to some other training example. This kind of diagram is
often called the Voronoi diagram of the set of training examples.

The k-NEAREST NEIGHBOR algorithm is easily adapted to approximating
continuous-valued target functions. To accomplish this, we have the algorithm
calculate the mean value of the k nearest training examples rather than calculate
their most common value. More precisely, to approximate a real-valued target
function f : !)In + !)I we replace the final line of the above algorithm by the line

8.2.1 Distance-Weighted NEAREST NEIGHBOR Algorithm
One obvious refinement to the k-NEAREST NEIGHBOR algorithm is to weight the con-
tribution of each of the k neighbors according to their distance to the query point
x,, giving greater weight to closer neighbors. For example, in the algorithm of
Table 8.1, which approximates discrete-valued target functions, we might weight
the vote of each neighbor according to the inverse square of its distance from x,.

This can be accomplished by replacing the final line of the algorithm by

where

To accommodate the case where the query point x, exactly matches one of the
training instances xi and the denominator d(x,, xi12 is therefore zero, we assign
f(x,) to be f (xi) in this case. If there are several such training examples, we
assign the majority classification among them.

We can distance-weight the instances for real-valued target functions in a
similar fashion, replacing the final line of the algorithm in this case by

where wi is as defined in Equation (8.3). Note the denominator in Equation (8.4) is
a constant that normalizes the contributions of the various weights (e.g., it assures
that if f (xi) = c for all training examples, then f(x,) t c as well).

Note all of the above variants of the k-NEAREST NEIGHBOR algorithm consider
only the k nearest neighbors to classify the query point. Once we add distance
weighting, there is really no harm in allowing all training examples to have an
influence on the classification of the x,, because very distant examples will have
very little effect on f(x,). The only disadvantage of considering all examples is
that our classifier will run more slowly. If all training examples are considered
when classifying a new query instance, we call the algorithm a global method.
If only the nearest training examples are considered, we call it a local method.
When the rule in Equation (8.4) is applied as a global method, using all training
examples, it is known as Shepard's method (Shepard 1968).

8.2.2 Remarks on k-NEAREST NEIGHBOR Algorithm
The distance-weighted k-NEAREST NEIGHBOR algorithm is a highly effective induc-
tive inference method for many practical problems. It is robust to noisy training
data and quite effective when it is provided a sufficiently large set of training
data. Note that by taking the weighted average of the k neighbors nearest to the
query point, it can smooth out the impact of isolated noisy training examples.

What is the inductive bias of k-NEAREST NEIGHBOR? The basis for classifying
new query points is easily understood based on the diagrams in Figure 8.1. The
inductive bias corresponds to an assumption that the classification of an instance
x, will be most similar to the classification of other instances that are nearby in
Euclidean distance.

One practical issue in applying k-NEAREST NEIGHBOR algorithms is that the
distance between instances is calculated based on all attributes of the instance

(i.e., on all axes in the Euclidean space containing the instances). This lies in
contrast to methods such as rule and decision tree learning systems that select
only a subset of the instance attributes when forming the hypothesis. To see the
effect of this policy, consider applying k-NEAREST NEIGHBOR to a problem in which
each instance is described by 20 attributes, but where only 2 of these attributes
are relevant to determining the classification for the particular target function. In
this case, instances that have identical values for the 2 relevant attributes may
nevertheless be distant from one another in the 20-dimensional instance space.
As a result, the similarity metric used by k-NEAREST NEIGHBOR--depending on
all 20 attributes-will be misleading. The distance between neighbors will be
dominated by the large number of irrelevant attributes. This difficulty, which
arises when many irrelevant attributes are present, is sometimes referred to as the
curse of dimensionality. Nearest-neighbor approaches are especially sensitive to
this problem.

One interesting approach to overcoming this problem is to weight each
attribute differently when calculating the distance between two instances. This
corresponds to stretching the axes in the Euclidean space, shortening the axes that
correspond to less relevant attributes, and lengthening the axes that correspond
to more relevant attributes. The amount by which each axis should be stretched
can be determined automatically using a cross-validation approach. To see how,
first note that we wish to stretch (multiply) the jth axis by some factor zj , where
the values z l . . . z, are chosen to minimize the true classification error of the
learning algorithm. Second, note that this true error can be estimated using cross-
validation. Hence, one algorithm is to select a random subset of the available
data to use as training examples, then determine the values of z l . . . z, that lead
to the minimum error in classifying the remaining examples. By repeating this
process multiple times the estimate for these weighting factors can be made more
accurate. This process of stretching the axes in order to optimize the performance
of k-NEAREST NEIGHBOR provides a mechanism for suppressing the impact of
irrelevant attributes.

An even more drastic alternative is to completely eliminate the least relevant
attributes from the instance space. This is equivalent to setting some of the zi
scaling factors to zero. Moore and Lee (1994) discuss efficient cross-validation
methods for selecting relevant subsets of the attributes for k-NEAREST NEIGHBOR
algorithms. In particular, they explore methods based on leave-one-out cross-
validation, in which the set of m training instances is repeatedly divided into a
training set of size m - 1 and test set of size 1, in all possible ways. This leave-one-
out approach is easily implemented in k-NEAREST NEIGHBOR algorithms because
no additional training effort is required each time the training set is redefined.
Note both of the above approaches can be seen as stretching each axis by some
constant factor. Alternatively, we could stretch each axis by a value that varies over
the instance space. However, as we increase the number of degrees of freedom
available to the algorithm for redefining its distance metric in such a fashion, we
also increase the risk of overfitting. Therefore, the approach of locally stretching
the axes is much less common.

One additional practical issue in applying k-NEAREST NEIGHBOR is efficient
memory indexing. Because this algorithm delays all processing until a new query
is received, significant computation can be required to process each new query.
Various methods have been developed for indexing the stored training examples so
that the nearest neighbors can be identified more efficiently at some additional cost
in memory. One such indexing method is the kd-tree (Bentley 1975; Friedman
et al. 1977), in which instances are stored at the leaves of a tree, with nearby
instances stored at the same or nearby nodes. The internal nodes of the tree sort
the new query x, to the relevant leaf by testing selected attributes of x,.

8.2.3 A Note on Terminology
Much of the literature on nearest-neighbor methods and weighted local regression
uses a terminology that has arisen from the field of statistical pattern recognition.
In reading that literature, it is useful to know the following terms:

0 Regression means approximating a real-valued target function.
Residual is the error { (x) - f (x) in approximating the target function.
Kernel function is the function of distance that is used to determine the
weight of each training example. In other words, the kernel function is the
function K such that wi = K(d(xi , x,)) .

8 3 LOCALLY WEIGHTED REGRESSION
The nearest-neighbor approaches described in the previous section can be thought
of as approximating the target function f (x) at the single query point x = x,.
Locally weighted regression is a generalization of this approach. It constructs an
explicit approximation to f over a local region surrounding x,. Locally weighted
regression uses nearby or distance-weighted training examples to form this local
approximation to f . For example, we might approximate the target function in
the neighborhood surrounding x, using a linear function, a quadratic function,
a multilayer neural network, or some other functional form. The phrase "locally
weighted regression" is called local because the function is approximated based a

only on data near the query point, weighted because the contribution of each
training example is weighted by its distance from the query point, and regression
because this is the term used widely in the statistical learning community for the
problem of approximating real-valued functions.

Given a new query instance x,, the general approach in locally weighted
regression is to construct an approximation f̂ that fits the training examples in the
neighborhood surrounding x,. This approximation is then used to calculate the
value f"(x,), which is output as the estimated target value for the query instance.
The description of f̂ may then be deleted, because a different local approximation
will be calculated for each distinct query instance.

CHAPTER 8 INSTANCE-BASED LEARNING 237

8.3.1 Locally Weighted Linear Regression
Let us consider the case of locally weighted regression in which the target function
f is approximated near x, using a linear function of the form

As before, a i (x) denotes the value of the ith attribute of the instance x .
Recall that in Chapter 4 we discussed methods such as gradient descent to

find the coefficients wo . . . w, to minimize the error in fitting such linear func-
tions to a given set of training examples. In that chapter we were interested in
a global approximation to the target function. Therefore, we derived methods to
choose weights that minimize the squared error summed over the set D of training
examples

which led us to the gradient descent training rule

where q is a constant learning rate, and where the training rule has been re-
expressed from the notation of Chapter 4 to fit our current notation (i.e., t + f (x) ,
o -+ f (x) , and xj -+ a j (x)) .

How shall we modify this procedure to derive a local approximation rather
than a global one? The simple way is to redefine the error criterion E to emphasize
fitting the local training examples. Three possible criteria are given below. Note
we write the error E(x ,) to emphasize the fact that now the error is being defined
as a function of the query point x,.

1. Minimize the squared error over just the k nearest neighbors:
1

E l (x q) = - C (f (x) - f^(xN2
x c k nearest nbrs of xq

2. Minimize the squared error over the entire set D of training examples, while
weighting the error of each training example by some decreasing function
K of its distance from x, :

3. Combine 1 and 2:

Criterion two is perhaps the most esthetically pleasing because it allows
every training example to have an impact on the classification of x,. However,

this approach requires computation that grows linearly with the number of training
examples. Criterion three is a good approximation to criterion two and has the
advantage that computational cost is independent of the total number of training
examples; its cost depends only on the number k of neighbors considered.

If we choose criterion three above and rederive the gradient descent rule
using the same style of argument as in Chapter 4, we obtain the following training
rule (see Exercise 8.1):

Notice the only differences between this new rule and the rule given by Equa-
tion (8.6) are that the contribution of instance x to the weight update is now
multiplied by the distance penalty K (d (x , , x)) , and that the error is summed over
only the k nearest training examples. In fact, if we are fitting a linear function
to a fixed set of training examples, then methods much more efficient than gra-
dient descent are available to directly solve for the desired coefficients wo . . . urn.
Atkeson et al. (1997a) and Bishop (1995) survey several such methods.

8.3.2 Remarks on Locally Weighted Regression
Above we considered using a linear function to approximate f in the neigh-
borhood of the query instance x,. The literature on locally weighted regression
contains a broad range of alternative methods for distance weighting the training
examples, and a range of methods for locally approximating the target function. In
most cases, the target function is approximated by a constant, linear, or quadratic
function. More complex functional forms are not often found because (1) the cost
of fitting more complex functions for each query instance is prohibitively high,
and (2) these simple approximations model the target function quite well over a
sufficiently small subregion of the instance space.

8.4 RADIAL BASIS FUNCTIONS
One approach to function approximation that is closely related to distance-weighted
regression and also to artificial neural networks is learning with radial basis func-
tions (Powell 1987; Broomhead and Lowe 1988; Moody and Darken 1989). In
this approach, the learned hypothesis is a function of the form

where each xu is an instance from X and where the kernel function K,(d(x, , x))
is defined so that it decreases as the distance d (x , , x) increases. Here k is a user-
provided constant that specifies the number of kernel functions to be included.
Even though f (x) is a global approximation to f (x) , the contribution from each
of the Ku(d (xu , x)) terms is localized to a region nearby the point xu. It is common

C H m R 8 INSTANCE-BASED LEARNING 239

to choose each function K, (d (xu, x)) to be a Gaussian function (see Table 5.4)
centered at the point xu with some variance a;.

+d2(xu,x)
K,(d(x, , x)) = e2".

We will restrict our discussion here to this common Gaussian kernel function.
As shown by Hartman et al. (1990), the functional form of Equation (8.8) can
approximate any function with arbitrarily small error, provided a sufficiently large
number k of such Gaussian kernels and provided the width a2 of each kernel can
be separately specified.

The function given by Equation (8.8) can be viewed as describing a two-
layer network where the first layer of units computes the values of the various
K,(d(x, , x)) and where the second layer computes a linear combination of these
first-layer unit values. An example radial basis function (RBF) network is illus-
trated in Figure 8.2.

Given a set of training examples of the target function, RBF networks are
typically trained in a two-stage process. First, the number k of hidden units is
determined and each hidden unit u is defined by choosing the values of xu and a:
that define its kernel function K,(d(x, , x)) . Second, the weights w, are trained to
maximize the fit of the network to the training data, using the global error criterion
given by Equation (8.5). Because the kernel functions are held fixed during this
second stage, the linear weight values w, can be trained very efficiently.

Several alternative methods have been proposed for choosing an appropriate
number of hidden units or, equivalently, kernel functions. One approach is to
allocate a Gaussian kernel function for each training example (xi , f (x i)) , centering
this Gaussian at the point x i . Each of these kernels may be assigned the same width
a2. Given this approach, the RBF network learns a global approximation to the
target function in which each training example (x i , f (x i)) can influence the value
of f only in the neighborhood of xi. One advantage of this choice of kernel
functions is that it allows the RBF network to fit the training data exactly. That
is, for any set of m training examples the weights wo . . . w, for combining the
m Gaussian kernel functions can be set so that f (x i) = f (xi) for each training

FIGURE 8.2
A radial basis function network. Each hidden unit produces
an activation determined by a Gaussian function centered at
some instance xu. Therefore, its activation will be close to zero
unless the input x is near xu. The output unit produces a linear
combination of the hidden unit activations. Although the network
shown here has just one output, multiple output units can also
be included.

A second approach is to choose a set of kernel functions that is smaller
than the number of training examples. This approach can be much more effi-
cient than the first approach, especially when the number of training examples
is large. The set of kernel functions may be distributed with centers spaced uni-
formly throughout the instance space X. Alternatively, we may wish to distribute
the centers nonuniformly, especially if the instances themselves are found to be
distributed nonuniformly over X. In this later case, we can pick kernel function
centers by randomly selecting a subset of the training instances, thereby sampling
the underlying distribution of instances. Alternatively, we may identify prototyp-
ical clusters of instances, then add a kernel function centered at each cluster. The
placement of the kernel functions in this fashion can be accomplished using un-
supervised clustering algorithms that fit the training instances (but not their target
values) to a mixture of Gaussians. The EM algorithm discussed in Section 6.12.1
provides one algorithm for choosing the means of a mixture of k Gaussians to
best fit the observed instances. In the case of the EM algorithm, the means are
chosen to maximize the probability of observing the instances xi, given the k
estimated means. Note the target function value f (xi) of the instance does not
enter into the calculation of kernel centers by unsupervised clustering methods.
The only role of the target values f (xi) in this case is to determine the output
layer weights w,.

To summarize, radial basis function networks provide a global approxima-
tion to the target function, represented by a linear combination of many local
kernel functions. The value for any given kernel function is non-negligible only
when the input x falls into the region defined by its particular center and width.
Thus, the network can be viewed as a smooth linear combination of many local
approximations to the target function. One key advantage to RBF networks is that
they can be trained much more efficiently than feedforward networks trained with
BACKPROPAGATION. This follows from the fact that the input layer and the output
layer of an RBF are trained separately.

8.5 CASE-BASED REASONING
Instance-based methods such as k-NEAREST NEIGHBOR and locally weighted re-
gression share three key properties. First, they are lazy learning methods in that
they defer the decision of how to generalize beyond the training data until a new
query instance is observed. Second, they classify new query instances by ana-
lyzing similar instances while ignoring instances that are very different from the
query. Third, they represent instances as real-valued points in an n-dimensional
Euclidean space. Case-based reasoning (CBR) is a learning paradigm based on
the first two of these principles, but not the third. In CBR, instances are typi-
ca:'y represented using more rich symbolic descriptions, and the methods used
to retrieve similar instances are correspondingly more elaborate. CBR has been
applied to problems such as conceptual design of mechanical devices based on
a stored library of previous designs (Sycara et al. 1992), reasoning about new
legal cases based on previous rulings (Ashley 1990), and solving planning and

CHAPTER 8 INSTANCEBASED LEARNING 241

scheduling problems by reusing and combining portions of previous solutions to
similar problems (Veloso 1992).

Let us consider a prototypical example of a case-based reasoning system to
ground our discussion. The CADET system (Sycara et al. 1992) employs case-
based reasoning to assist in the conceptual design of simple mechanical devices
such as water faucets. It uses a library containing approximately 75 previous
designs and design fragments to suggest conceptual designs to meet the specifi-
cations of new design problems. Each instance stored in memory (e.g., a water
pipe) is represented by describing both its structure and its qualitative function.
New design problems are then presented by specifying the desired function and
requesting the corresponding structure. This problem setting is illustrated in Fig-
ure 8.3. The top half of the figure shows the description of a typical stored case
called a T-junction pipe. Its function is represented in terms of the qualitative re-
lationships among the waterflow levels and temperatures at its inputs and outputs.
In the functional description at its right, an arrow with a "+" label indicates that
the variable at the arrowhead increases with the variable at its tail. For example,
the output waterflow Q3 increases with increasing input waterflow Ql. Similarly,

A stored case: T-junction pipe

Structure:

QIJT T = temperature

'L Q = watertlow

r Q3J5
Qz4

A problem specification: Water faucet

Structure:

Function:

Function:

FIGURE 8.3
A stored case and a new problem. The top half of the figure describes a typical design fragment
in the case library of CADET. The function is represented by the graph of qualitative dependencies
among the T-junction variables (described in the text). The bottom half of the figure shows a typical
design problem.

a "-" label indicates that the variable at the head decreases with the variable at
the tail. The bottom half of this figure depicts a new design problem described
by its desired function. This particular function describes the required behavior of
one type of water faucet. Here Q, refers to the flow of cold water into the faucet,
Qh to the input flow of hot water, and Q, to the single mixed flow out of the
faucet. Similarly, T,, Th, and T, refer to the temperatures of the cold water, hot
water, and mixed water respectively. The variable C, denotes the control signal
for temperature that is input to the faucet, and Cf denotes the control signal for
waterflow. Note the description of the desired function specifies that these con-
trols C, and Cf are to influence the water flows Q, and Qh, thereby indirectly
influencing the faucet output flow Q, and temperature T,.

Given this functional specification for the new design problem, CADET
searches its library for stored cases whose functional descriptions match the design
problem. If an exact match is found, indicating that some stored case implements
exactly the desired function, then this case can be returned as a suggested solution
to the design problem. If no exact match occurs, CADET may find cases that
match various subgraphs of the desired functional specification. In Figure 8.3, for
example, the T-junction function matches a subgraph of the water faucet function
graph. More generally, CADET searches for subgraph isomorphisms between the
two function graphs, so that parts of a case can be found to match parts of the
design specification. Furthermore, the system may elaborate the original function
specification graph in order to create functionally equivalent graphs that may
match still more cases. It uses general knowledge about physical influences to
create these elaborated function graphs. For example, it uses a rewrite rule that
allows it to rewrite the influence

This rewrite rule can be interpreted as stating that if B must increase with A,
then it is sufficient to find some other quantity x such that B increases with x ,
and x increases with A. Here x is a universally quantified variable whose value
is bound when matching the function graph against the case library. In fact, the
function graph for the faucet shown in Figure 8.3 is an elaboration of the original -
functional specification produced by applying such rewrite rules.

By retrieving multiple cases that match different subgraphs, the entire de-
sign can sometimes be pieced together. In general, the process of producing a
final solution from multiple retrieved cases can be very complex. It may require
designing portions of the system from first principles, in addition to merging re-
trieved portions from stored cases. It may also require backtracking on earlier
choices of design subgoals and, therefore, rejecting cases that were previously
retrieved. CADET has very limited capabilities for combining and adapting multi-
ple retrieved cases to form the final design and relies heavily on the user for this
adaptation stage of the process. As described by Sycara et al. (1992), CADET is

CHAPTER 8 INSTANCE-BASED LEARMNG 243

a research prototype system intended to explore the potential role of case-based
reasoning in conceptual design. It does not have the range of analysis algorithms
needed to refine these abstract conceptual designs into final designs.

It is instructive to examine the correspondence between the problem setting
of CADET and the general setting for instance-based methods such as k-NEAREST
NEIGHBOR. In CADET each stored training example describes a function graph
along with the structure that implements it. New queries correspond to new func-
tion graphs. Thus, we can map the CADET problem into our standard notation by
defining the space of instances X to be the space of all function graphs. The tar-
get function f maps function graphs to the structures that implement them. Each
stored training example (x, f (x)) is a pair that describes some function graph x
and the structure f (x) that implements x. The system must learn from the training
example cases to output the structure f (x,) that successfully implements the input
function graph query x,.

The above sketch of the CADET system illustrates several generic properties
of case-based reasoning systems that distinguish them from approaches such as
k-NEAREST NEIGHBOR.

0 Instances or cases may be represented by rich symbolic descriptions, such
as the function graphs used in CADET. This may require a similarity metric
different from Euclidean distance, such as the size of the largest shared
subgraph between two function graphs.

0 Multiple retrieved cases may be combined to form the solution to the new
problem. This is similar to the k-NEAREST NEIGHBOR approach, in that mul-
tiple similar cases are used to construct a response for the new query.
However, the process for combining these multiple retrieved cases can be
very different, relying on knowledge-based reasoning rather than statistical
methods.

0 There may be a tight coupling between case retrieval, knowledge-based
reasoning, and problem solving. One simple example of this is found in
CADET, which uses generic knowledge about influences to rewrite function
graphs during its attempt to find matching cases. Other systems have been
developed that more fully integrate case-based reasoning into general search-
based problem-solving systems. Two examples are ANAPRON (Golding and
Rosenbloom 199 1) and PRODIGY/ANALOGY (Veloso 1992).

To summarize, case-based reasoning is an instance-based learning method
in which instances (cases) may be rich relational descriptions and in which the re-
trieval and combination of cases to solve the current query may rely on knowledge-
based reasoning and search-intensive problem-solving methods. One current re-
search issue in case-based reasoning is to develop improved methods for indexing
cases. The central issue here is that syntactic similarity measures (e.g., subgraph
isomorphism between function graphs) provide only an approximate indication of
the relevance of a particular case to a particular problem. When the CBR system
attempts to reuse the retrieved cases it may uncover difficulties that were not

244 MACHINE LEARNING

captured by this syntactic similarity measure. For example, in CADET the multi-
ple retrieved design fragments may turn out to be incompatible with one another,
making it impossible to combine them into a consistent final design. When this
occurs in general, the CBR system may backtrack and search for additional cases,
adapt the existing cases, or resort to other problem-solving methods. Importantly,
when such difficulties are detected they also provide training data for improving
the similarity metric or, equivalently, the indexing structure for the case library.
In particular, if a case is retrieved based on the similarity metric, but found to be
irrelevant based on further analysis, then the similarity metric should be refined
to reject this case for similar subsequent queries.

8.6 REMARKS ON LAZY AND EAGER LEARNING
In this chapter we considered three lazy learning methods: the k-NEAREST NEIGH-
BOR algorithm, locally weighted regression, and case-based reasoning. We call
these methods lazy because they defer the decision of how to generalize beyond
the training data until each new query instance is encountered. We also discussed
one eager learning method: the method for learning radial basis function networks.
We call this method eager because it generalizes beyond the training data before
observing the new query, committing at training time to the network structure and
weights that define its approximation to the target function. In this same sense,
every other algorithm discussed elsewhere in this book (e.g., BACKPROPAGATION,
C4.5) is an eager learning algorithm.

Are there important differences in what can be achieved by lazy versus eager
learning? Let us distinguish between two kinds of differences: differences in com-
putation time and differences in the classifications produced for new queries. There
are obviously differences in computation time between eager and lazy methods.
For example, lazy methods will generally require less computation during training,
but more computation when they must predict the target value for a new query.

The more fundamental question is whether there are essential differences in
the inductive bias that can be achieved by lazy versus eager methods. The key
difference between lazy and eager methods in this regard is

0 Lazy methods may consider the query instance x, when deciding how to
generalize beyond the training data D.

0 Eager methods cannot. By the time they observe the query instance x, they
have already chosen their (global) approximation to the target function.

Does this distinction affect the generalization accuracy of the learner? It does if we
require that the lazy and eager learner employ the same hypothesis space H. To
illustrate, consider the hypothesis space consisting of linear functions. The locally
weighted linear regression algorithm discussed earlier is a lazy learning method
based on this hypothesis space. For each new query x, it generalizes from the
training data by choosing a new hypothesis based on the training examples near x,.
In contrast, an eager learner that uses the same hypothesis space of linear functions

CHAPTER 8 INSTANCE-BASED LEARNING 245

must choose its approximation before the queries are observed. The eager learner
must therefore commit to a single linear function hypothesis that covers the entire
instance space and all future queries. The lazy method effectively uses a richer
hypothesis space because it uses many different local linear functions to form its
implicit global approximation to the target function. Note this same situation holds
for other learners and hypothesis spaces as well. A lazy version of BACKPROPAGA-
TION, for example, could learn a different neural network for each distinct query
point, compared to the eager version of BACKPROPAGATION discussed in Chapter 4.

The key point in the above paragraph is that a lazy learner has the option
of (implicitly) representing the target function by a combination of many local
approximations, whereas an eager learner must commit at training time to a single
global approximation. The distinction between eager and lazy learning is thus
related to the distinction between global and local approximations to the target
function.

Can we create eager methods that use multiple local approximations to
achieve the same effects as lazy local methods? Radial basis function networks can
be seen as one attempt to achieve this. The RBF learning methods we discussed
are eager methods that commit to a global approximation to the target function
at training time. However, an RBF network represents this global function as a
linear combination of multiple local kernel functions. Nevertheless, because RBF
learning methods must commit to the hypothesis before the query point is known,
the local approximations they create are not specifically targeted to the query
point to the same degree as in a lazy learning method. Instead, RBF networks are
built eagerly from local approximations centered around the training examples, or
around clusters of training examples, but not around the unknown future query
points.

To summarize, lazy methods have the option of selecting a different hypoth-
esis or local approximation to the target function for each query instance. Eager
methods using the same hypothesis space are more restricted because they must
commit to a single hypothesis that covers the entire instance space. Eager methods
can, of course, employ hypothesis spaces that combine multiple local approxima-
tions, as in RBF networks. However, even these combined local approximations do
not give eager methods the full ability of lazy methods to customize to unknown
future query instances.

8.7 SUMMARY AND FURTHER READING
The main points of this chapter include:

Instance-based learning methods differ from other approaches to function ap-
proximation because they delay processing of training examples until they
must label a new query instance. As a result, they need not form an explicit
hypothesis of the entire target function over the entire instance space, in-
dependent of the query instance. Instead, they may form a different local
approximation to the target function for each query instance.

246 MACHINE LEARNING
1

0 Advantages of instance-based methods include the ability to model complex
target functions by a collection of less complex local approximations and the
fact that information present in the training examples is never lost (because
the examples themselves are stored explicitly). The main practical difficul-
ties include efficiency of labeling new instances (all processing is done at
query time rather than in advance), difficulties in determining an appropriate
distance metric for retrieving "related" instances (especially when examples
are represented by complex symbolic descriptions), and the negative impact
of irrelevant features on the distance metric.

0 k-NEAREST NEIGHBOR is an instance-based algorithm for approximating real-
valued or discrete-valued target functions, assuming instances correspond to
points in an n-dimensional Euclidean space. The target function value for
a new query is estimated from the known values of the k nearest training
examples.

0 Locally weighted regression methods are a generalization of k-NEAREST
NEIGHBOR in which an explicit local approximation to the target function
is constructed for each query instance. The local approximation to the target
function may be based on a variety of functional forms such as constant,
linear, or quadratic functions or on spatially localized kernel functions.

0 Radial basis function (RBF) networks are a type of artificial neural network
constructed from spatially localized kernel functions. These can be seen as a
blend of instance-based approaches (spatially localized influence of each ker-
nel function) and neural network approaches (a global approximation to the
target function is formed at training time rather than a local approximation
at query time). Radial basis function networks have been used successfully
in applications such as interpreting visual scenes, in which the assumption
of spatially local influences is well-justified.

0 Case-based reasoning is an instance-based approach in which instances are
represented by complex logical descriptions rather than points in a Euclidean
space. Given these complex symbolic descriptions of instances, a rich variety
of methods have been proposed for mapping from the training examples to
target function values for new instances. Case-based reasoning methods have
been used in applications such as modeling legal reasoning and for guiding
searches in complex manufacturing and transportation planning problems.

The k-NEAREST NEIGHBOR algorithm is one of the most thoroughly analyzed
algorithms in machine learning, due in part to its age and in part to its simplicity.
Cover and Hart (1967) present early theoretical results, and Duda and Hart (1973)
provide a good overview. Bishop (1995) provides a discussion of k-NEAREST
NEIGHBOR and its relation to estimating probability densities. An excellent current
survey of methods for locally weighted regression is given by Atkeson et al.
(1997). The application of these methods to robot control is surveyed by Atkeson
et al. (1997b).

A thorough discussion of radial basis functions is provided by Bishop (1995).
Other treatments are given by Powell (1987) and Poggio and Girosi (1990). See
Section 6.12 of this book for a discussion of the EM algorithm and its application
to selecting the means of a mixture of Gaussians.

Kolodner (1993) provides a general introduction to case-based reasoning.
Other general surveys and collections describing recent research are given by
Aamodt et al. (1994), Aha et al. (1991), Haton et al. (1995), Riesbeck and Schank
(1989), Schank et al. (1994), Veloso and Aamodt (1995), Watson (1995), and
Wess et al. (1994).

EXERCISES
8.1. Derive the gradient descent rule for a distance-weighted local linear approximation

to the target function, given by Equation (8.1).
8.2. Consider the following alternative method for accounting for distance in weighted

local regression. Create a virtual set of training examples D' as follows: For each
training example (x, f (x)) in the original data set D, create some (possibly fractional)
number of copies of (x, f (x)) in D', where the number of copies is K (d(x,, x)). Now
train a linear approximation to minimize the error criterion

The idea here is to make more copies of training examples that are near the query
instance, and fewer of those that are distant. Derive the gradient descent rule for
this criterion. Express the rule in the form of a sum over members of D rather than
D', and compare it with the rules given by Equations (8.6) and (8.7).

8.3. Suggest a lazy version of the eager decision tree learning algorithm ID3 (see Chap-
ter 3). What are the advantages and disadvantages of your lazy algorithm compared
to the original eager algorithm?

REFERENCES
Aamodt, A., & Plazas, E. (1994). Case-based reasoning: Foundational issues, methodological varia-

tions, and system approaches. A1 Communications, 7(1), 39-52.
Aha, D., & Kibler, D. (1989). Noise-tolerant instance-based learning algorithms. Proceedings of the

IJCAI-89 (794-799).
Aha, D., Kibler, D., & Albert, M. (1991). Instance-based learning algorithms. Machine Learning, 6,

37-66.
Ashley, K. D. (1990). Modeling legal argument: Reasoning with cases and hypotheticals. Cambridge,

MA: MIT Press.
Atkeson, C. G., Schaal, S. A., & Moore, A. W. (1997a). Locally weighted learning. AIReview, (to

appear).
Atkeson, C. G., Moore, A. W., & Schaal, S. A. (1997b). Locally weighted learning for control. A1

Review, (to appear).
Bareiss, E. R., Porter, B., & Weir, C. C. (1988). PROTOS: An exemplar-based learning apprentice.

International Journal of Man-Machine Studies, 29, 549-561.
Bentley, J. L. (1975). Multidimensional binary search trees used for associative searching. Cornmu-

nications of the ACM, 18(9), 509-517.

248 MACHINE LEARNING
1

Bishop, C. M. (1995). Neural networks for pattern recognition. Oxford, England: Oxford University
Press.

Bisio, R., & Malabocchia, F. (1995). Cost estimation of software projects through case-based reason-
ing. In M. Veloso and A. Aamodt (Eds.), Lecture Notes in Artificial Intelligence (pp. 11-22).
Berlin: Springer-Verlag.

Broomhead, D. S., & Lowe, D. (1988). Multivariable functional interpolation and adaptive networks.
Complex Systems, 2, 321-355.

Cover, T., & Hart, P. (1967). Nearest neighbor pattern classification. IEEE Transactions on Infonna-
tion Theory, 13,21-27.

Duda, R., & Hart, P. (1973). Pattern classification and scene analysis. New York: John Wiley &
Sons.

Franke, R. (1982). Scattered data interpolation: Tests of some methods. Mathematics of Computation,
38, 181-200.

Friedman, J., Bentley, J., & Finkel, R. (1977). An algorithm for finding best matches in logarithmic
expected time. ACM Transactions on Mathematical Software, 3(3), 209-226.

Golding, A., & Rosenbloom, P. (1991). Improving rule-based systems through case-based reasoning.
Proceedings of the Ninth National Conference on Artificial Intelligence (pp. 22-27). Cam-
bridge: AAAI Pressme MIT Press.

Hartman, E. J., Keller, J. D., & Kowalski, J. M. (1990). Layered neural networks with Gaussian
hidden units as universal approximations. Neural Computation, 2(2), 210-215.

Haton, J.-P., Keane, M., & Manago, M. (Eds.). (1995). Advances in case-based reasoning: Second
European workshop. Berlin: Springer-Verlag.

Kolodner, J. L. (1993). Case-Based Reasoning. San Francisco: Morgan Kaufmann.
Moody, J. E., & Darken, C. J. (1989). Fast learning in networks of locally-tuned processing units.

Neural Computation, 1(2), 281-294.
Moore, A. W., & Lee, M. S. (1994). Efficient algorithms for minimizing cross validation error. Pro-

ceedings of the 11th International Conference on Machine Learning. San Francisco: Morgan
Kaufmann.

Poggio, T., & Girosi, F. (1990). Networks for approximation and learning. Proceedings of the IEEE,
78(9), 1481-1497.

Powell, M. J. D. (1987). Radial basis functions for multivariable interpolation: A review. In Mason,
J., & Cox, M. (Eds.). Algorithms for approximation (pp. 143-167). Oxford: Clarendon Press.

Riesbeck, C., & Schank, R. (1989). Inside case-based reasoning. Hillsdale, NJ: Lawrence Erlbaum.
Schank, R. (1982). Dynamic Memory. Cambridge, England: Cambridge University Press.
Schank, R., Riesbeck, C., & Kass, A. (1994). Inside case-based explanation. Hillsdale, NJ: Lawrence

Erlbaum.
Shepard, D. (1968). A two-dimensional interpolation function for irregularly spaced data. Proceedings

of the 23rd National Conference of the ACM (pp. 517-523).
Stanfill, C., & Waltz, D. (1986). Toward memory-based reasoning. Communications of the ACM,

29(12), 1213-1228.
Sycara, K., Guttal, R., Koning, J., Narasimhan, S., & Navinchandra, D. (1992). CADET: A case-

based synthesis tool for engineering design. International Journal of Expert Systems, 4(2),
157-188.

Veloso, M. M. (1992). Planning and learning by analogical reasoning. Berlin: Springer-Verlag.
Veloso, M. M., & Aamodt, A. (Eds.). (1995). Case-based reasoning research and development.

Lectwe Notes in Artificial Intelligence. Berlin: Springer-Verlag.
Watson, I. (Ed.). (1995). Progress in case-based reasoning: First United Kingdom workshop. Berlin:

Springer-Verlag.
Wess, S., Althoff, K., & Richter, M. (Eds.). (1994). Topics in case-based reasoning. Berlin: Springer-

Verlag.

CHAPTER

GENETIC
ALGORITHMS

Genetic algorithms provide an approach to learning that is based loosely on simulated
evolution. Hypotheses are often described by bit strings whose interpretation depends
on the application, though hypotheses may also be described by symbolic expressions
or even computer programs. The search for an appropriate hypothesis begins with a
population, or collection, of initial hypotheses. Members of the current population
give rise to the next generation population by means of operations such as random
mutation and crossover, which are patterned after processes in biological evolution.
At each step, the hypotheses in the current population are evaluated relative to
a given measure of fitness, with the most fit hypotheses selected probabilistically
as seeds for producing the next generation. Genetic algorithms have been applied
successfully to a variety of learning tasks and to other optimization problems. For
example, they have been used to learn collections of rules for robot control and to
optimize the topology and learning parameters for artificial neural networks. This
chapter covers both genetic algorithms, in which hypotheses are typically described
by bit strings, and genetic programming, in which hypotheses are described by
computer programs.

9.1 MOTIVATION
Genetic algorithms (GAS) provide a learning method motivated by an analogy to
biological evolution. Rather than search from general-to-specific hypotheses, or
from simple-to-complex, GAS generate successor hypotheses by repeatedly mutat-
ing and recombining parts of the best currently known hypotheses. At each step,

a collection of hypotheses called the current population is updated by replacing
some fraction of the population by offspring of the most fit current hypotheses.
The process forms a generate-and-test beam-search of hypotheses, in which vari-
ants of the best current hypotheses are most likely to be considered next. The
popularity of GAS is motivated by a number of factors including:

Evolution is known to be a successful, robust method for adaptation within
biological systems.
GAS can search spaces of hypotheses containing complex interacting parts,
where the impact of each part on overall hypothesis fitness may be difficult
to model.

0 Genetic algorithms are easily parallelized and can take advantage of the
decreasing costs of powerful computer hardware.

This chapter describes the genetic algorithm approach, illustrates its use, and
examines the nature of its hypothesis space search. We also describe a variant
called genetic programming, in which entire computer programs are evolved to
certain fitness criteria. Genetic algorithms and genetic programming are two of
the more popular approaches in a field that is sometimes called evolutionary
computation. In the final section we touch on selected topics in the study of
biological evolution, including the Baldwin effect, which describes an interesting
interplay between the learning capabilities of single individuals and the rate of
evolution of the entire population.

9.2 GENETIC ALGORITHMS -

The problem addressed by GAS is to search a space of candidate hypotheses to
identify the best hypothesis. In GAS the "best hypothesis" is defined as the one
that optimizes a predefined numerical measure for the problem at hand, called the
hypothesis Jitness. For example, if the learning task is the problem of approxi-
mating an unknown function given training examples of its input and output, then
fitness could be defined as the accuracy of the hypothesis over this training data.
If the task is to learn a strategy for playing chess, fitness could be defined as the
number of games won by the individual when playing against other individuals
in the current population.

Although different implementations of genetic algorithms vary in their de-
tails, they typically share the following structure: The algorithm operates by itera-
tively updating a pool of hypotheses, called the population. On each iteration, all
members of the population are evaluated according to the fitness function. A new
population is then generated by probabilistically selecting the most fit individuals
from the current population. Some of these selected individuals are carried forward
into the next generation population intact. Others are used as the basis for creating
new offspring individuals by applying genetic operations such as crossover and
mutation.

Fitness: A function that assigns an evaluation score, given a hypothesis.
Fitnessdhreshold: A threshold specifying the termination criterion.
p: The number of hypotheses to be included in the population.
r: The fraction of the population to be replaced by Crossover at each step.
m: The mutation rate.

Initialize population: P c Generate p hypotheses at random
Evaluate: For each h in P , compute Fitness(h)'
While [max Fitness(h)] < Fitnessdhreshold do

h
Create a new generation, Ps:
1. Select: F'robabilistically select (1 - r)p members of P to add to Ps. The probability Pr(hi) of

selecting hypothesis hi from P is given by

2. Crossover: Probabilistically select pairs of hypotheses from P , according to &(hi) given
above. For each pair, (h l , h2), produce two offspring by applying the Crossover operator.
Add all offspring to P,.

3. Mutate: Choose m percent of the members of P, with uniform probability. For each, invert
one randomly selected bit in its representation.

4. Update: P t P,.
5. Evaluate: for each h in P , compute Fitness(h)
Return the hypothesis from P that has the highest fitness.

TABLE 9.1
A prototypical genetic algorithm. A population containing p hypotheses is maintained. On each itera-
tion, the successor population Ps is formed by probabilistically selecting current hypotheses according
to their fitness and by adding new hypotheses. New hypotheses are created by applying a crossover
operator to pairs of most fit hypotheses and by creating single point mutations in the resulting gener-
ation of hypotheses. This process is iterated until sufficiently fit hypotheses are discovered. Typical
crossover and mutation operators are defined in a subsequent table.

A prototypical genetic algorithm is described in Table 9.1. The inputs to
this algorithm include the fitness function for ranking candidate hypotheses, a
threshold defining an acceptable level of fitness for terminating the algorithm,
the size of the population to be maintained, and parameters that determine how
successor populations are to be generated: the fraction of the population to be
replaced at each generation and the mutation rate.

Notice in this algorithm each iteration through the main loop produces a new
generation of hypotheses based on the current population. First, a certain number
of hypotheses from the current population are selected for inclusion in the next
generation. These are selected probabilistically, where the probability of selecting
hypothesis hi is given by

Thus, the probability that a hypothesis will be selected is proportional to its
own fitness and is inversely proportional to the fitness of the other competing
hypotheses in the current population.

Once these members of the current generation have been selected for inclu-
sion in the next generation population, additional members are generated using a
crossover operation. Crossover, defined in detail in the next section, takes two par-
ent hypotheses from the current generation and creates two offspring hypotheses
by recombining portions of both parents. The parent hypotheses are chosen proba-
bilistically from the current population, again using the probability function given
by Equation (9.1). After new members have been created by this crossover opera-
tion, the new generation population now contains the desired number of members.
At this point, a certain fraction m of these members are chosen at random, and
random mutations all performed to alter these members.

This GA algorithm thus performs a randomized, parallel beam search for
hypotheses that perform well according to the fitness function. In the follow-
ing subsections, we describe in more detail the representation of hypotheses and
genetic operators used in this algorithm.

9.2.1 Representing Hypotheses
Hypotheses in GAS are often represented by bit strings, so that they can be easily
manipulated by genetic operators such as mutation and crossover. The hypotheses
represented by these bit strings can be quite complex. For example, sets of if-then
rules can easily be represented in this way, by choosing an encoding of rules
that allocates specific substrings for each rule precondition and postcondition.
Examples of such rule representations in GA systems are described by Holland
(1986); Grefenstette (1988); and DeJong et al. (1993).

To see how if-then rules can be encoded by bit strings, .first consider how we
might use a bit string to describe a constraint on the value of a single attribute. To
pick an example, consider the attribute Outlook, which can take on any of the three
values Sunny, Overcast, or Rain. One obvious way to represent a constraint on
Outlook is to use a bit string of length three, in which each bit position corresponds
to one of its three possible values. Placing a 1 in some position indicates that the
attribute is allowed to take on the corresponding value. For example, the string 010
represents the constraint that Outlook must take on the second of these values, ,
or Outlook = Overcast. Similarly, the string 011 represents the more general
constraint that allows two possible values, or (Outlook = Overcast v Rain).
Note 11 1 represents the most general possible constraint, indicating that we don't
care which of its possible values the attribute takes on.

Given this method for representing constraints on a single attribute, con-
junctions of constraints on multiple attributes can easily be represented by con-
catenating the corresponding bit strings. For example, consider a second attribute,
Wind, that can take on the value Strong or Weak. A rule precondition such as

(Outlook = Overcast V Rain) A (Wind = Strong)

can then be represented by the following bit string of length five:

Outlook Wind
01 1 10

Rule postconditions (such as PlayTennis = yes) can be represented in a
similar fashion. Thus, an entire rule can be described by concatenating the bit
strings describing the rule preconditions, together with the bit string describing
the rule postcondition. For example, the rule

IF Wind = Strong THEN PlayTennis = yes

would be represented by the string

Outlook Wind PlayTennis
111 10 10

where the first three bits describe the "don't care" constraint on Outlook, the next
two bits describe the constraint on Wind, and the final two bits describe the rule
postcondition (here we assume PlayTennis can take on the values Yes or No).
Note the bit string representing the rule contains a substring for each attribute
in the hypothesis space, even if that attribute is not constrained by the rule pre-
conditions. This yields a fixed length bit-string representation for rules, in which
substrings at specific locations describe constraints on specific attributes. Given
this representation for single rules, we can represent sets of rules by similarly
concatenating the bit string representations of the individual rules.

In designing a bit string encoding for some hypothesis space, it is useful to
arrange for every syntactically legal bit string to represent a well-defined hypoth-
esis. To illustrate, note in the rule encoding in the above paragraph the bit string
11 1 10 11 represents a rule whose postcondition does not constrain the target
attribute PlayTennis. If we wish to avoid considering this hypothesis, we may
employ a different encoding (e.g., allocate just one bit to the PlayTennis post-
condition to indicate whether the value is Yes or No), alter the genetic operators
so that they explicitly avoid constructing such bit strings, or simply assign a very
low fitness to such bit strings.

In some GAS, hypotheses are represented by symbolic descriptions rather
than bit strings. For example, in Section 9.5 we discuss a genetic algorithm that
encodes hypotheses as computer programs.

9.2.2 Genetic Operators
The generation of successors in a GA is determined by a set of operators that
recombine and mutate selected members of the current population. Typical GA
operators for manipulating bit string hypotheses are illustrated in Table 9.1. These
operators correspond to idealized versions of the genetic operations found in bi-
ological evolution. The two most common operators are crossover and mutation.

The crossover operator produces two new offspring from two parent strings,
by copying selected bits from each parent. The bit at position i in each offspring
is copied from the bit at position i in one of the two parents. The choice of which
parent contributes the bit for position i is determined by an additional string called
the crossover mask. To illustrate, consider the single-point crossover operator at
the top of Table 9.2. Consider the topmost of the two offspring in this case. This
offspring takes its first five bits from the first parent and its remaining six bits
from the second parent, because the crossover mask 11 11 1000000 specifies these
choices for each of the bit positions. The second offspring uses the same crossover
mask, but switches the roles of the two parents. Therefore, it contains the bits that
were not used by the first offspring. In single-point crossover, the crossover mask
is always constructed so that it begins with a string containing n contiguous Is,
followed by the necessary number of 0s to complete the string. This results in
offspring in which the first n bits are contributed by one parent and the remaining
bits by the second parent. Each time the single-point crossover operator is applied,

Initial strings Crossover Mask Offspring

Single-point crossover:

Two-point crossover:

Uniform crossover:

Point mutation: lllOloo_1000 111010~1000

TABLE 9.2
Common operators for genetic algorithms. These operators form offspring of hypotheses represented
by bit strings. The crossover operators create two descendants from two parents, using the crossover
mask to determine which parent contributes which bits. Mutation creates a single descendant from a
single parent by changing the value of a randomly chosen bit.

the crossover point n is chosen at random, and the crossover mask is then created
and applied.

In two-point crossover, offspring are created by substituting intermediate
segments of one parent into the middle of the second parent string. Put another
way, the crossover mask is a string beginning with no zeros, followed by a con-
tiguous string of nl ones, followed by the necessary number of zeros to complete
the string. Each time the two-point crossover operator is applied, a mask is gen-
erated by randomly choosing the integers no and nl. For instance, in the example
shown in Table 9.2 the offspring are created using a mask for which no = 2 and
n 1 = 5. Again, the two offspring are created by switching the roles played by the
two parents.

Uniform crossover combines bits sampled uniformly from the two parents,
as illustrated in Table 9.2. In this case the crossover mask is generated as a random
bit string with each bit chosen at random and independent of the others.

In addition to recombination operators that produce offspring by combining
parts of two parents, a second type of operator produces offspring from a single
parent. In particular, the mutation operator produces small random changes to the
bit string by choosing a single bit at random, then changing its value. Mutation is
often performed after crossover has been applied as in our prototypical algorithm
from Table 9.1.

Some GA systems employ additional operators, especially operators that are
specialized to the particular hypothesis representation used by the system. For
example, Grefenstette et al. (1991) describe a system that learns sets of rules
for robot control. It uses mutation and crossover, together with an operator for
specializing rules. Janikow (1993) describes a system that learns sets of rules
using operators that generalize and specialize rules in a variety of directed ways
(e.g., by explicitly replacing the condition on an attribute by "don't care").

9.2.3 Fitness Function and Selection
The fitness function defines the criterion for ranking potential hypotheses and for
probabilistically selecting them for inclusion in the next generation population. If
the task is to learn classification rules, then the fitness function typically has a
component that scores the classification accuracy of the rule over a set of provided
training examples. Often other criteria may be included as well, such as the com-
plexity or generality of the rule. More generally, when the bit-string hypothesis is
interpreted as a complex procedure (e.g., when the bit string represents a collec-
tion of if-then rules that will be chained together to control a robotic device), the
fitness function may measure the overall performance of the resulting procedure
rather than performance of individual rules.

In our prototypical GA shown in Table 9.1, the probability that a hypothesis
will be selected is given by the ratio of its fitness to the fitness of other members
of the current population as seen in Equation (9.1). This method is sometimes
called jitness proportionate selection, or roulette wheel selection. Other methods
for using fitness to select hypotheses have also been proposed. For example, in

256 MACHINE LEARNING
1

tournament selection, two hypotheses are first chosen at random from the current
population. With some predefined probability p the more fit of these two is then
selected, and with probability (1 - p) the less fit hypothesis is selected. Tourna-
ment selection often yields a more diverse population than fitness proportionate
selection (Goldberg and Deb 1991). In another method called rank selection, the
hypotheses in the current population are first sorted by fitness. The probability
that a hypothesis will be selected is then proportional to its rank in this sorted
list, rather than its fitness.

9.3 AN ILLUSTRATIVE EXAMPLE
A genetic algorithm can be viewed as a general optimization method that searches
a large space of candidate objects seeking one that performs best according to the
fitness function. Although not guaranteed to find an optimal object, GAS often
succeed in finding an object with high fitness. GAS have been applied to a number
of optimization problems outside machine learning, including problems such as
circuit layout and job-shop scheduling. Within machine learning, they have been
applied both to function-approximation problems and to tasks such as choosing
the network topology for artificial neural network learning systems.

To illustrate the use of GAS for concept learning, we briefly summarize
the GABIL system described by DeJong et al. (1993). GABIL uses a GA to
learn boolean concepts represented by a disjunctive set of propositional rules.
In experiments over several concept learning problems, GABIL was found to be
roughly comparable in generalization accuracy to other learning algorithms such
as the decision tree learning algorithm C4.5 and the rule learning system AQ14.
The learning tasks in this study included both artificial learning tasks designed to
explore the systems' generalization accuracy and the real world problem of breast
cancer diagnosis.

The algorithm used by GABIL is exactly the algorithm described in Ta-
ble 9.1. In experiments reported by DeJong et al. (1993), the parameter r, which
determines the fraction of the parent population replaced by crossover, was set
to 0.6. The parameter m, which determines the mutation rate, was set to 0.001.
These are typical settings for these parameters. The population size p was varied
from 100 to 1000, depending on the specific learning task.

The specific instantiation of the GA algorithm in GABIL can be summarized
as follows:

0 Representation. Each hypothesis in GABIL corresponds to a disjunctive set
of propositional rules, encoded as described in Section 9.2.1. In particular,
the hypothesis space of rule preconditions consists of a conjunction of con-
straints on a fixed set of attributes, as described in that earlier section. To
represent a set of rules, the bit-string representations of individual rules are
concatenated. To illustrate, consider a hypothesis space in which rule precon-
ditions are conjunctions of constraints over two boolean attributes, a1 and a2.
The rule postcondition is described by a single bit that indicates the predicted

value of the target attribute c. Thus, the hypothesis consisting of the two rules

I F a l = T r \ a z = F THEN c = T ; IF a 2 = T THEN c = F

would be represented by the string

Note the length of the bit string grows with the number of rules in the hy-
pothesis. This variable bit-string length requires a slight modification to the
crossover operator, as described below.

a Genetic operators. GABIL uses the standard mutation operator of Table 9.2,
in which a single bit is chosen at random and replaced by its complement.
The crossover operator that it uses is a fairly standard extension to the
two-point crossover operator described in Table 9.2. In particular, to accom-
modate the variable-length bit strings that encode rule sets, and to constrain
the system so that crossover occurs only between like sections of the bit
strings that encode rules, the following approach is taken. To perform a
crossover operation on two parents, two crossover points are first chosen
at random in the first parent string. Let dl (dz) denote the distance from
the leftmost (rightmost) of these two crossover points to the rule boundary
immediately to its left. The crossover points in the second parent are now
randomly chosen, subject to the constraint that they must have the same dl
and d2 value. For example, if the two parent strings are

and

and the crossover points chosen for the first parent are the points following
bit positions 1 and 8,

where "[" and "1" indicate crossover points, then dl = 1 and dz = 3. Hence
the allowed pairs of crossover points for the second parent include the pairs
of bit positions (1,3), (1,8), and (6,8). If the pair (1,3) happens to be
chosen,

then the two resulting offspring will be

and

As this example illustrates, this crossover operation enables offspring to
contain a different number of rules than their parents, while assuring that all
bit strings generated in this fashion represent well-defined rule sets.
Fitness function. The fitness of each hypothesized rule set is based on its
classification accuracy over the training data. In particular, the function used
to measure fitness is

where correct (h) is the percent of all training examples correctly classified
by hypothesis h.

In experiments comparing the behavior of GABIL to decision tree learning
algorithms such as C4.5 and ID5R, and to the rule learning algorithm AQ14,
DeJong et al. (1993) report roughly comparable performance among these systems,
tested on a variety of learning problems. For example, over a set of 12 synthetic
problems, GABIL achieved an average generalization accuracy of 92.1 %, whereas
the performance of the other systems ranged from 91.2 % to 96.6 %.

9.3.1 Extensions
DeJong et al. (1993) also explore two interesting extensions to the basic design
of GABIL. In one set of experiments they explored the addition of two new ge-
netic operators that were motivated by the generalization operators common in
many symbolic learning methods. The first of these operators, AddAlternative,
generalizes the constraint on a specific attribute by changing a 0 to a 1 in the
substring corresponding to the attribute. For example, if the constraint on an at-
tribute is represented by the string 10010, this operator might change it to 101 10.
This operator was applied with probability .O1 to selected members of the popu-
lation on each generation. The second operator, Dropcondition performs a more
drastic generalization step, by replacing all bits for a particular attribute by a 1.
This operator corresponds to generalizing the rule by completely dropping the
constraint on the attribute, and was applied on each generation with probability
.60. The authors report this revised system achieved an average performance of
95.2% over the above set of synthetic learning tasks, compared to 92.1% for the
basic GA algorithm.

In the above experiment, the two new operators were applied with the same
probability to each hypothesis in the population on each generation. In a second
experiment, the bit-string representation for hypotheses was extended to include
two bits that determine which of these operators may be applied to the hypothesis.
In this extended representation, the bit string for a typical rule set hypothesis
would be

where the final two bits indicate in this case that the AddAlternative operator may
be applied to this bit string, but that the Dropcondition operator may not. These
two new bits define part of the search strategy used by the GA and are themselves
altered and evolved using the same crossover and mutation operators that operate
on other bits in the string. While the authors report mixed results with this approach
(i.e., improved performance on some problems, decreased performance on others),
it provides an interesting illustration of how GAS might in principle be used to
evolve their own hypothesis search methods.

9.4 HYPOTHESIS SPACE SEARCH
As illustrated above, GAS employ a randomized beam search method to seek a
maximally fit hypothesis. This search is quite different from that of other learning
methods we have considered in this book. To contrast the hypothesis space search
of GAS with that of neural network BACKPROPAGATION, for example, the gradient
descent search in BACKPROPAGATION moves smoothly from one hypothesis to a
new hypothesis that is very similar. In contrast, the GA search can move much
more abruptly, replacing a parent hypothesis by an offspring that may be radically
different from the parent. Note the GA search is therefore less likely to fall into
the same kind of local minima that can plague gradient descent methods.

One practical difficulty in some GA applications is the problem of crowding.
Crowding is a phenomenon in which some individual that is more highly fit than
others in the population quickly reproduces, so that copies of this individual and

1 very similar individuals take over a large fraction of the population. The negative
impact of crowding is that it reduces the diversity of the population, thereby slow-
ing further progress by the GA. Several strategies have been explored for reducing
crowding. One approach is to alter the selection function, using criteria such as
tournament selection or rank selection in place of fitness proportionate roulette
wheel selection. A related strategy is "fitness sharing," in which the measured
fitness of an individual is reduced by the presence of other, similar individuals
in the population. A third approach is to restrict the kinds of individuals allowed
to recombine to form offspring. For example, by allowing only the most similar
individuals to recombine, we can encourage the formation of clusters of similar
individuals, or multiple "subspecies" within the population. A related approach is
to spatially distribute individuals and allow only nearby individuals to recombine.
Many of these techniques are inspired by the analogy to biological evolution.

9.4.1 Population Evolution and the Schema Theorem
It is interesting to ask whether one can mathematically characterize the evolution
over time of the population within a GA. The schema theorem of Holland (1975)
provides one such characterization. It is based on the concept of schemas, or pat-
terns that describe sets of bit strings. To be precise, a schema is any string com-
posed of Os, Is, and *'s. Each schema represents the set of bit strings containing the
indicated 0s and Is, with each "*" interpreted as a "don't care." For example, the
schema 0*10 represents the set of bit strings that includes exactly 0010 and 01 10.

An individual bit string can be viewed as a representative of each of the
different schemas that it matches. For example, the bit string 0010 can be thought
of as a representative of 24 distinct schemas including 00**, O* 10, ****, etc. Sim-
ilarly, a population of bit strings can be viewed in terms of the set of schemas that
it represents and the number of individuals associated with each of these schema.

The schema theorem characterizes the evolution of the population within a
GA in terms of the number of instances representing each schema. Let m(s, t)
denote the number of instances of schema s in the population at time t (i.e.,
during the tth generation). The schema theorem describes the expected value of
m(s, t + 1) in terms of m(s, t) and other properties of the schema, population, and
GA algorithm parameters.

The evolution of the population in the GA depends on the selection step,
the recombination step, and the mutation step. Let us start by considering just the
effect of the selection step. Let f (h) denote the fitness of the individual bit string
h and f(t) denote the average fitness of all individuals in the population at time t.
Let n be the total number of individuals in the population. Let h E s n p, indicate
that the individual h is both a representative of schema s and a member of the
population at time t. Finally, let 2(s , t) denote the average fitness of instances of
schema s in the population at time t.

We are interested in calculating the expected value of m(s, t + l), which
we denote E[m(s, t + I)]. We can calculate E[m (s , t + I)] using the probability
distribution for selection given in Equation (9. I), which can be restated using our
current terminology as follows:

Now if we select one member for the new population according to this probability
distribution, then the probability that we will select a representative of schema s is

The second step above follows from the fact that by definition,

Equation (9.2) gives the probability that a single hypothesis selected by the G A
will be an instance of schema s . Therefore, the expected number of instances
of s resulting from the n independent selection steps that create the entire new
generation is just n times this probability.

Equation (9.3) states that the expected number of instances of schema s at gener-
ation t + 1 is proportional to the average fitness i (s , t) of instances of this schema
at time t , and inversely proportional to the average fitness f (t) of all members
of the population at time t. Thus, we can expect schemas with above average fit-
ness to be represented with increasing frequency on successive generations. If we
view the G A as performing a virtual parallel search through the space of possible
schemas at the same time it performs its explicit parallel search through the space
of individuals, then Equation (9.3) indicates that more fit schemas will grow in
influence over time.

While the above analysis considered only the selection step of the GA, the
crossover and mutation steps must be considered as well. The schema theorem con-
siders only the possible negative influence of these genetic operators (e.g., random
mutation may decrease the number of representatives of s , independent of O(s, t)) ,
and considers only the case of single-point crossover. The full schema theorem
thus provides a lower bound on the expected frequency of schema s , as follows:

Here, p, is the probability that the single-point crossover operator will be applied
to an arbitrary individual, and p, is the probability that an arbitrary bit of an
arbitrary individual will be mutated by the mutation operator. o(s) is the number

I of defined bits in schema s , where 0 and 1 are defined bits, but * is not. d(s) is
the distance between the leftmost and rightmost defined bits in s . Finally, 1 is the
length of the individual bit strings in the population. Notice the leftmost term in
Equation (9.4) is identical to the term from Equation (9.3) and describes the ef-
fect of the selection step. The middle term describes the effect of the single-point
crossover operator-in particular, it describes the probability that an arbitrary in-
dividual representing s will still represent s following application of this crossover
operator. The rightmost term describes the probability that an arbitrary individual
representing schema s will still represent schema s following application of the
mutation operator. Note that the effects of single-point crossover and mutation
increase with the number of defined bits o(s) in the schema and with the distance
d(s) between the defined bits. Thus, the schema theorem can be roughly interpreted
as stating that more fit schemas will tend to grow in influence, especially schemas

containing a small number of defined bits (i.e., containing a large number of *'s),
and especially when these defined bits are near one another within the bit string.

The schema theorem is perhaps the most widely cited characterization of
population evolution within a GA. One way in which it is incomplete is that it fails
to consider the (presumably) positive effects of crossover and mutation. Numerous
more recent theoretical analyses have been proposed, including analyses based on
Markov chain models and on statistical mechanics models. See, for example,
Whitley and Vose (1995) and Mitchell (1996).

9.5 GENETIC PROGRAMMING
Genetic programming (GP) is a form of evolutionary computation in which the in-
dividuals in the evolving population are computer programs rather than bit strings.
Koza (1992) describes the basic genetic programming approach and presents a
broad range of simple programs that can be successfully learned by GP.

9.5.1 Representing Programs
Programs manipulated by a GP are typically represented by trees correspond-
ing to the parse tree of the program. Each function call is represented by a
node in the tree, and the arguments to the function are given by its descendant
nodes. For example, Figure 9.1 illustrates this tree representation for the function
sin(x) + J-. To apply genetic programming to a particular domain, the user
must define the primitive functions to be considered (e.g., sin, cos, J, +, -, ex-
ponential~), as well as the terminals (e.g., x, y , constants such as 2). The genetic
programming algorithm then uses an evolutionary search to explore the vast space
of programs that can be described using these primitives.

As in a genetic algorithm, the prototypical genetic programming algorithm
maintains a population of individuals (in this case, program trees). On each it-
eration, it produces a new generation of individuals using selection, crossover,
and mutation. The fitness of a given individual program in the population is typ-
ically determined by executing the program on a set of training data. Crossover
operations are performed by replacing a randomly chosen subtree of one parent

FIGURE 9.1
Program tree representation in genetic programming.
Arbitrary programs are represented by their parse trees.

FIGURE 9.2
Crossover operation applied to two parent program trees (top). Crossover points (nodes shown in
bold at top) are chosen at random. The subtrees rooted at these crossover points are then exchanged
to create children trees (bottom).

program by a subtree from the other parent program. Figure 9.2 illustrates a typical
crossover operation.

Koza (1992) describes a set of experiments applying a GP to a number of
applications. In his experiments, 10% of the current population, selected prob-
abilistically according to fitness, is retained unchanged in the next generation.
The remainder of the new generation is created by applying crossover to pairs
of programs from the current generation, again selected probabilistically accord-
ing to their fitness. The mutation operator was not used in this particular set of
experiments.

9.5.2 Illustrative Example
One illustrative example presented by Koza (1992) involves learning an algorithm
for stacking the blocks shown in Figure 9.3. The task is to develop a general algo-
rithm for stacking the blocks into a single stack that spells the word "universal,"

FIGURE 9.3
A block-stacking problem. The task for GP is to discover a program that can transform an arbitrary
initial configuration of blocks into a stack that spells the word "universal." A set of 166 such initial
configurations was provided to evaluate fitness of candidate programs (after Koza 1992).

independent of the initial configuration of blocks in the world. The actions avail-
able for manipulating blocks allow moving only a single block at a time. In
particular, the top block on the stack can be moved to the table surface, or a
block on the table surface can be moved to the top of the stack.

As in most GP applications, the choice of problem representation has a
significant impact on the ease of solving the problem. In Koza's formulation, the
primitive functions used to compose programs for this task include the following
three terminal arguments:

0 CS (current stack), which refers to the name of the top block on the stack,
or F if there is no current stack.
TB (top correct block), which refers to the name of the topmost block on
the stack, such that it and those blocks beneath it are in the correct order.

0 NN (next necessary), which refers to the name of the next block needed
above TB in the stack, in order to spell the word "universal," or F if no
more blocks are needed.

As can be seen, this particular choice of terminal arguments provides a natu-
ral representation for describing programs for manipulating blocks for this task.
Imagine, in contrast, the relative difficulty of the task if we were to instead define
the terminal arguments to be the x and y coordinates of each block.

In addition to these terminal arguments, the program language in this appli-
cation included the following primitive functions:

(MS x) (move to stack), if block x is on the table, this operator moves x to
the top of the stack and returns the value T. Otherwise, it does nothing and
returns the value F.

0 (MT x) (move to table), if block x is somewhere in the stack, this moves the
block at the top of the stack to the table and returns the value T. Otherwise,
it returns the value F.

0 (EQ x y) (equal), which returns T if x equals y , and returns F otherwise.
0 (NOT x), which returns T if x = F, and returns F if x = T.

0 (DU x y) (do until), which executes the expression x repeatedly until ex-
pression y returns the value T.

To allow the system to evaluate the fitness of any given program, Koza
provided a set of 166 training example problems representing a broad variety of
initial block configurations, including problems of differing degrees of difficulty.
The fitness of any given program was taken to be the number of these examples
solved by the algorithm. The population was initialized to a set of 300 random
programs. After 10 generations, the system discovered the following program,
which solves all 166 problems.

(EQ (DU (MT CS)(NOT CS)) (DU (MS NN)(NOT NN)))

Notice this program contains a sequence of two DU, or "Do Until" state-
ments. The first repeatedly moves the current top of the stack onto the table, until
the stack becomes empty. The second "Do Until" statement then repeatedly moves
the next necessary block from the table onto the stack. The role played by the
top level EQ expression here is to provide a syntactically legal way to sequence
these two "Do Until" loops.

Somewhat surprisingly, after only a few generations, this GP was able to
discover a program that solves all 166 training problems. Of course the ability
of the system to accomplish this depends strongly on the primitive arguments
and functions provided, and on the set of training example cases used to evaluate
fitness.

9.5.3 Remarks on Genetic Programming
As illustrated in the above example, genetic programming extends genetic algo-
rithms to the evolution of complete computer programs. Despite the huge size of
the hypothesis space it must search, genetic programming has been demonstrated
to produce intriguing results in a number of applications. A comparison of GP
to other methods for searching through the space of computer programs, such as
hillclimbing and simulated annealing, is given by O'Reilly and Oppacher (1994).

While the above example of GP search is fairly simple, Koza et al. (1996)
summarize the use of a GP in several more complex tasks such as designing
electronic filter circuits and classifying segments of protein molecules. The fil-
ter circuit design problem provides an example of a considerably more complex
problem. Here, programs are evolved that transform a simple fixed seed circuit
into a final circuit design. The primitive functions used by the GP to construct its
programs are functions that edit the seed circuit by inserting or deleting circuit
components and wiring connections. The fitness of each program is calculated
by simulating the circuit it outputs (using the SPICE circuit simulator) to de-
termine how closely this circuit meets the design specifications for the desired
filter. More precisely, the fitness score is the sum of the magnitudes of errors
between the desired and actual circuit output at 101 different input frequen-
cies. In this case, a population of size 640,000 was maintained, with selection

producing 10% of the successor population, crossover producing 89%, and mu-
tation producing 1%. The system was executed on a 64-node parallel proces-
sor. Within the first randomly generated population, the circuits produced were
so unreasonable that the SPICE simulator could not even simulate the behav-
ior of 98% of the circuits. The percentage of unsimulatable circuits dropped to
84.9% following the first generation, to 75.0% following the second generation,
and to an average of 9.6% over succeeding generations. The fitness score of the
best circuit in the initial population was 159, compared to a score of 39 after
20 generations and a score of 0.8 after 137 generations. The best circuit, pro-
duced after 137 generations, exhibited performance very similar to the desired
behavior.

In most cases, the performance of genetic programming depends crucially
on the choice of representation and on the choice of fitness function. For this
reason, an active area of current research is aimed at the automatic discovery
and incorporation of subroutines that improve on the original set of primitive
functions, thereby allowing the system to dynamically alter the primitives from
which it constructs individuals. See, for example, Koza (1994).

9.6 MODELS OF EVOLUTION AND LEARNING
In many natural systems, individual organisms learn to adapt significantly during
their lifetime. At the same time, biological and social processes allow their species
to adapt over a time frame of many generations. One interesting question regarding
evolutionary systems is "What is the relationship between learning during the
lifetime of a single individual, and the longer time frame species-level learning
afforded by evolution?'

9.6.1 Lamarckian Evolution
Larnarck was a scientist who, in the late nineteenth century, proposed that evo-
lution over many generations was directly influenced by the experiences of indi-
vidual organisms during their lifetime. In particular, he proposed that experiences
of a single organism directly affected the genetic makeup of their offspring: If
an individual learned during its lifetime to avoid some toxic food, it could pass
this trait on genetically to its offspring, which therefore would not need to learn
the trait. This is an attractive conjecture, because it would presumably allow for
more efficient evolutionary progress than a generate-and-test process (like that of
GAS and GPs) that ignores the experience gained during an individual's lifetime.
Despite the attractiveness of this theory, current scientific evidence overwhelm-
ingly contradicts Lamarck's model. The currently accepted view is that the genetic
makeup of an individual is, in fact, unaffected by the lifetime experience of one's
biological parents. Despite this apparent biological fact, recent computer studies
have shown that Lamarckian processes can sometimes improve the effectiveness
of computerized genetic algorithms (see Grefenstette 1991; Ackley and Littman
1994; and Hart and Belew 1995).

9.6.2 Baldwin Effect
Although Lamarckian evolution is not an accepted model of biological evolution,
other mechanisms have been suggested by which individual learning can alter
the course of evolution. One such mechanism is called the Baldwin effect, after
J. M. Baldwin (1896), who first suggested the idea. The Baldwin effect is based
on the following observations:

0 If a species is evolving in a changing environment, there will be evolution-
ary pressure to favor individuals with the capability to learn during their
lifetime. For example, if a new predator appears in the environment, then
individuals capable of learning to avoid the predator will be more successful
than individuals who cannot learn. In effect, the ability to learn allows an
individual to perform a small local search during its lifetime to maximize its
fitness. In contrast, nonlearning individuals whose fitness is fully determined
by their genetic makeup will operate at a relative disadvantage.

0 Those individuals who are able to learn many traits will rely less strongly
on their genetic code to "hard-wire" traits. As a result, these individuals
can support a more diverse gene pool, relying on individual learning to
overcome the "missing" or "not quite optimized" traits in the genetic code.
This more diverse gene pool can, in turn, support more rapid evolutionary
adaptation. Thus, the ability of individuals to learn can have an indirect
accelerating effect on the rate of evolutionary adaptation for the entire pop-
ulation.

To illustrate, imagine some new change in the environment of some species,
such as a new predator. Such a change will selectively favor individuals capa-
ble of learning to avoid the predator. As the proportion of such self-improving
individuals in the population grows, the population will be able to support a
more diverse gene pool, allowing evolutionary processes (even non-Lamarckian
generate-and-test processes) to adapt more rapidly. This accelerated adaptation
may in turn enable standard evolutionary processes to more quickly evolve a
genetic (nonlearned) trait to avoid the predator (e.g., an instinctive fear of this
animal). Thus, the Baldwin effect provides an indirect mechanism for individ-
ual learning to positively impact the rate of evolutionary progress. By increas-
ing survivability and genetic diversity of the species, individual learning sup-
ports more rapid evolutionary progress, thereby increasing the chance that the
species will evolve genetic, nonlearned traits that better fit the new environ-
ment.

There have been several attempts to develop computational models to study
the Baldwin effect. For example, Hinton and Nowlan (1987) experimented with
evolving a population of simple neural networks, in which some network weights
were fixed during the individual network "lifetime," while others were trainable.
The genetic makeup of the individual determined which weights were train-
able and which were fixed. In their experiments, when no individual learning

268 MACHINE LEARNING

was allowed, the population failed to improve its fitness over time. However,
when individual learning was allowed, the population quickly improved its fit-
ness. During early generations of evolution the population contained a greater
proportion of individuals with many trainable weights. However, as evolution
proceeded, the number of fixed, correct network weights tended to increase, as
the population evolved toward genetically given weight values and toward less
dependence on individual learning of weights. Additional computational stud-
ies of the Baldwin effect have been reported by Belew (1990), Harvey (1993),
and French and Messinger (1994). An excellent overview of this topic can be
found in Mitchell (1996). A special issue of the journal Evolutionary Computa-
tion on this topic (Turney et al. 1997) contains several articles on the Baldwin
effect.

9.7 PARALLELIZING GENETIC ALGORITHMS
GAS are naturally suited to parallel implementation, and a number of approaches
to parallelization have been explored. Coarse grain approaches to paralleliza-
tion subdivide the population into somewhat distinct groups of individuals, called
demes. Each deme is assigned to a different computational node, and a standard
GA search is performed at each node. Communication and cross-fertilization be-
tween demes occurs on a less frequent basis than within demes. Transfer between
demes occurs by a migration process, in which individuals from one deme are
copied or transferred to other demes. This process is modeled after the kind of
cross-fertilization that might occur between physically separated subpopulations
of biological species. One benefit of such approaches is that it reduces the crowd-
ing problem often encountered in nonparallel GAS, in which the system falls into
a local optimum due to the early appearance of a genotype that comes to dominate
the entire population. Examples of coarse-grained parallel GAS are described by
Tanese (1989) and by Cohoon et al. (1987).

In contrast to coarse-grained parallel implementations of GAS, fine-grained
implementations typically assign one processor per individual in the population.
Recombination then takes place among neighboring individuals. Several differ-
ent types of neighborhoods have been proposed, ranging from planar grid to
torus. Examples of such systems are described by Spiessens and Manderick
(1991). An edited collection of papers on parallel GAS is available in Stender
(1993).

9.8 SUMMARY AND FURTHER READING
The main points of this chapter include:

0 Genetic algorithms (GAS) conduct a randomized, parallel, hill-climbing
search for hypotheses that optimize a predefined fitness function.

0 The search performed by GAS is based on an analogy to biological evolu-
tion. A diverse population of competing hypotheses is maintained. At each

iteration, the most fit members of the population are selected to produce new
offspring that replace the least fit members of the population. Hypotheses
are often encoded by strings that are combined by crossover operations, and .
subjected to random mutations.

a GAS illustrate how learning can be viewed as a special case of optimization.
In particular, the learning task is to find the optimal hypothesis, according to
the predefined fitness function. This suggests that other optimization tech-
niques such as simulated annealing can also be applied to machine learning
problems.

a GAS have most commonly been applied to optimization problems outside
machine learning, such as design optimization problems. When applied to
learning tasks, GAS are especially suited to tasks in which hypotheses are
complex (e.g., sets of rules for robot control, or computer programs), and
in which the objective to be optimized may be an indirect function of
the hypothesis (e.g., that the set of acquired rules successfully controls a
robot).

0 Genetic programming is a variant of genetic algorithms in which the hy-
potheses being manipulated are computer programs rather than bit strings.
Operations such as crossover and mutation are generalized to apply to pro-
grams rather than bit strings. Genetic programming has been demonstrated
to learn programs for tasks such as simulated robot control (Koza 1992) and
recognizing objects in visual scenes (Teller and Veloso 1994).

Evolution-based computational approaches have been explored since the
early days of computer science (e.g., Box 1957 and Bledsoe 1961). Several
different evolutionary approaches were introduced during the 1960s and have
been further explored since that time. Evolution strategies, developed by Rechen-
berg (1965, 1973) to optimize numerical parameters in engineering design, were
followed up by Schwefel (1975, 1977, 1995) and others. Evolutionary program-
ming, developed by Folgel, Owens, and Walsh (1966) as a method for evolv-
ing finite-state machines, was followed up by numerous researchers (e.g.,
Fogel and Atmar 1993). Genetic algorithms, introduced by Holland (1962, 1975)
included the notion of maintaining a large population of individuals and em-
phasized crossover as a key operation in such systems. Genetic programming,
introduced by Koza (1992), applies the search strategy of genetic algorithms to
hypotheses consisting of computer programs. As computer hardware continues to
become faster and less expensive, interest in evolutionary approaches continues
to grow.

One approach to using GAS to learn sets of rules was developed by
K. DeJong and his students at the University of Pittsburgh (e.g., Smith 1980).
In this approach, each rule set is one member in the population of competing
hypotheses, as in the GABIL system discussed in this chapter. A somewhat dif-
ferent approach was developed at University of Michigan by Holland and his
students (Holland 1986), in which each rule is a member of the population, and

the population itself is the rule set. A biological perspective on the roles of muta-
tion, inbreeding, cross-breeding, and selection in evolution is provided by Wright
(1977).

Mitchell (1996) and Goldberg (1989) are two textbooks devoted to the sub-
ject of genetic algorithms. Forrest (1993) provides an overview of the technical
issues in GAS, and Goldberg (1994) provides an overview of several recent ap-
plications. Koza's (1992) monograph on genetic programming is the standard
reference for this extension of genetic algorithms to manipulation of computer
programs. The primary conference in which new results are published is the In-
ternational Conference on Genetic Algorithms. Other relevant conferences include
the Conference on Simulation of Adaptive Behavior, the International Confer-
ence on Artijicial Neural Networks and Genetic Algorithms, and the IEEE In-
ternational Conference on Evolutionary Computation. An annual conference is
now held on genetic programming, as well (Koza et al. 1996b). The Evolution-
ary Computation Journal is one source of recent research results in the field.
Several special issues of the journal Machine Learning have also been devoted
to GAS.

EXERCISES
9.1. Design a genetic algorithm to learn conjunctive classification rules for the Play-

Tennis problem described in Chapter 3. Describe precisely the bit-string encoding
of hypotheses and a set of crossover operators.

9.2. Implement a simple GA for Exercise 9.1. Experiment with varying population size p,
the fraction r of the population replaced at each generation, and the mutation rate m.

9.3. Represent the program discovered by the GP (described in Section 9.5.2) as a tree.
Illustrate the operation of the GP crossover operator by applying it using two copies
of your tree as the two parents.

9.4. Consider applying GAS to the task of finding an appropriate set of weights for
an artificial neural network (in particular, a feedforward network identical to those
trained by BACKPROPAGATION (Chapter 4)). Consider a 3 x 2 x 1 layered, feedfor-
ward network. Describe an encoding of network weights as a bit string, and describe
an appropriate set of crossover operators. Hint: Do not allow all possible crossover
operations on bit strings. State one advantage and one disadvantage of using GAS
in contrast to BACKPROPAGATION to train network weights.

REFERENCES
Ackley, D., & Littman, M. (1994). A case for Lamarckian evolution. In C. Langton (Ed.), Am$cial

life III. Reading, MA: Addison Wesley.
Back, T. (1996). Evolutionary algorithms in theory andpractice. Oxford, England: Oxford University

Press.
Baldwin, J. M. (1896). A new factor in evolution. American Naturalist, 3, 441-451, 536-553.

ht tp: / /www.santafe . edu/s f i /publ i ca t ions /B
Belew, R. (1990). Evolution, learning, and culture: Computational metaphors for adaptive algorithms.

Complex Systems, 4, 11-49.

Belew, R. K., & Mitchell, M. (Eds.). (1996). Adaptive individuals in evolving populations: Models
and algorithms. Reading, MA: Addison-Wesley.

Bledsoe, W. (1961). The use of biological concepts in the analytical study of systems. Proceedings
of the ORSA-TIMS National Meeting, San Francisco.

Booker, L. B., Goldberg, D. E., & Holland, J. H. (1989). Classifier systems and genetic algorithms.
Artificial Intelligence, 40, 235-282.

Box, G. (1957). Evolutionary operation: A method for increasing industrial productivity. Jountal of
the Royal Statistical Society, 6(2), 81-101.

Cohoon, J. P., Hegde, S. U., Martin, W. N., & Richards, D. (1987). Punctuated equilibria: A parallel
genetic algorithm. Proceedings of the Second International Conference on Genetic Algorithms
(pp. 148-154).

DeJong, K. A. (1975). An analysis of behavior of a class of genetic adaptive systems (Ph.D. disser-
tation). University of Michigan.

DeJong, K. A., Spears, W. M., & Gordon, D. F. (1993). Using genetic algorithms for concept learning.
Machine Learning, 13, 161-188.

Folgel, L. J., Owens, A. J., & Walsh, M. J. (1966). Artificial intelligence through simulated evolution.
New York: John Wiley & Sons.

Fogel, L. J., & Atmar, W. (Eds.). (1993). Proceedings of the Second Annual Conference on Evolu-
tionary Programming. Evolutionary Programming Society.

Forrest, S. (1993). Genetic algorithms: Principles of natural selection applied to computation. Science,
261, 872-878.

French, R., & Messinger A. (1994). Genes, phenes, and the Baldwin effect: Learning and evolution
in a simulated population. In R. Brooks and P. Maes (Eds.), ArtiJicial Life IV. Cambridge,
MA: MIT Press.

Goldberg, D. (1989). Genetic algorithms in search, optimization, and machine learning. Reading,
MA: Addison-Wesley.

Goldberg, D. (1994). Genetic and evolutionary algorithms come of age. Communications of the ACM,
37(3), 113-1 19.

Green, D. P., & Smith, S. F. (1993). Competition based induction of decision models from examples.
Machine Learning, 13,229-257.

Grefenstette, J. J. (1988). Credit assignment in rule discovery systems based on genetic algorithms.
Machine Learning, 3, 225-245.

Grefenstette, J. J. (1991). Lamarckian learning in multi-agent environments. In R. Belew and L.
Booker (Eds.), Proceedings of the Fourth International Conference on Genetic Algorithms.
San Mateo, CA: Morgan Kaufmann.

Hart, W., & Belew, R. (1995). Optimization with genetic algorithm hybrids that use local search. In
R. Below and M. Mitchell (Eds.), Adaptive individuals in evolving populations: Models and
algorithms. Reading, M A : Addison-Wesley.

Harvey, I. (1993). The puzzle of the persistent question marks: A case study of genetic drift. In
Forrest (Ed.), Proceedings of the Fzfth International Conference on Genetic Algorithms. San
Mateo, CA: Morgan Kaufmann.

Hinton, G. &, & Nowlan, S. J. (1987). How learning can guide evolution. Complex Systems, 1,
495-502.

Holland, J. H. (1962). Outline for a logical theory of adaptive systems. Journal of the Association
for Computing Machinery, 3, 297-314.

Holland, J. H. (1975). Adaptation in natural and art$cial systems. University of Michigan Press
(reprinted in 1992 by MIT Press, Cambridge, MA).

Holland, J. H. (1986). Escaping brittleness: The possibilities of general-purpose learning algorithms
applied to parallel rule-based systems. In R. Michalski, J. Carbonell, & T. Mitchell (Eds.),
Machine learning: An artijicial intelligence approach (Vol. 2). San Mateo, CA: Morgan Kauf-
mann.

Holland, J. H. (1989). Searching nonlinear functions for high values. Applied Mathematics and Com-
putation, 32, 255-274.

Janikow, C. Z. (1993). A knowledge-intensive GA for supervised learning. Machine Learning, 13,
189-228.

Koza, J. (1992). Genetic programming: On the programming of computers by means of natural se-
lection. Cambridge, MA: MIT Press.

Koza, J. R. (1994). Genetic Programming 11: Automatic discovery of reusable programs. Cambridge,
MA: The MIT Press.

Koza, J. R., Bennett 111, F. H., Andre, D., & Keane, M. A. (1996). Four problems for which a
computer program evolved by genetic programming is competitive with human performance.
Proceedings of the 1996 IEEE International Conference on Evolutionary Computation (pp.
1-10). IEEE Press.

Koza, J. R., Goldberg, D. E., Fogel, D. B., & Riolo, R. L. (Eds.). (1996b). Genetic programming
19%: Proceedings of the First Annual Conference. Cambridge, MA: MIT Press.

Machine Learning: Special Issue on Genetic Algorithms (1988) 3:2-3, October.
Machine Learning: Special Issue on Genetic Algorithms (1990) 5:4, October.
Machine karning: Special Issue on Genetic Algorithms (1 993) l3:2,3, November.
Mitchell, M. (1996). An introduction to genetic algorithms. Cambridge, MA: MIT Press.
O'Reilly, U-M., & Oppacher, R. (1994). Program search with a hierarchical variable length repre-

sentation: Genetic programming, simulated annealing, and hill climbing. In Y. Davidor et al.
(Eds.), Parallel problem solving from nature-PPSN I11 (Vol. 866) (Lecture notes in computer
science). Springer-Verlag.

Rechenberg, I. (1965). Cybernetic solution path of an experimental problem. Ministry of aviation,
Royal Aircraft Establishment, U.K.

Rechenberg, I. (1973). Evolutionsstrategie: Optimierung technischer systeme nach prinzipien der
biolgischen evolution. Stuttgart: Frommann-Holzboog.

Schwefel, H. P. (1975). Evolutionsstrategie und numerische optimiemng (Ph.D. thesis). Technical
University of Berlin.

Schwefel, H. P. (1977). Numerische optimierung von computer-modellen mittels der evolutionsstrate-
gie. Basel: Birkhauser.

Schwefel, H. P. (1995). Evolution and optimum seeking. New York: John Wiley & Sons.
Spiessens, P., & Manderick, B. (1991). A massively parallel genetic algorithm: Implementation and

first analysis. Proceedings of the 4th International Conference on Genetic Algorithms (pp.
279-286).

Smith, S. (1980). A learning system based on genetic adaptive algorithms (Ph.D. dissertation). Com-
puter Science, University of Pittsburgh.

Stender, J. (Ed.) (1993). Parallel genetic algorithms. Amsterdam: IOS Publishing.
Tanese, R. (1989). Distributed genetic algorithms. Proceedings of the 3rd International Conference

on Genetic Algorithms (pp. 434-439).
Teller, A., & Veloso, M. (1994). PADO: A new learning architecture for object recognition. In K.

Ikeuchi & M. Veloso (Eds.), Symbolic visual learning @p. 81-116). Oxford, England: Oxford
Univ. Press.

Turney, P. D. (1995). Cost-sensitive classification: Empirical evaluation of a hybrid genetic decision
tree induction algorithm. Journal of Al Research, 2, 369-409. http://www.cs.washington.edu/
research/jair/home.htmI.

Tumey, P. D., Whitley, D., & Anderson, R. (1997). Evolutionary Computation. Special issue:
The Baldwin effect, 4(3). Cambridge, MA: MIT Press. http://www-mitpress.mit.eduljmls-
catalog/evolution-abstracts/evol.html.

Whitley, L. D., & Vose, M. D. (Eds.). (1995). Foundations of genetic algorithms 3. Morgan Kauf-
mann.

Wright, S. (1977). Evolution and the genetics of populations. Vol. 4: Variability within and among
Natural Populations. Chicago: University of Chicago Press.

Zbignlew, M. (1992). Genetic algorithms + data structures = evolution programs. Berlin: Springer-
Verlag.

CHAPTER

LEARNING
SETS OF RULES

One of the most expressive and human readable representations for learned hypothe-
ses is sets of if-then rules. This chapter explores several algorithms for learning such
sets of rules. One important special case involves learning sets of rules containing
variables, called first-order Horn clauses. Because sets of first-order Horn clauses
can be interpreted as programs in the logic programming language PROLOG, learning
them is often called inductive logic programming (ILP). This chapter examines sev-
eral approaches to learning sets of rules, including an approach based on inverting
the deductive operators of mechanical theorem provers.

10.1 INTRODUCTION
In many cases it is useful to learn the target function represented as a set of
if-then rules that jointly define the function. As shown in Chapter 3, one way to
learn sets of rules is to first learn a decision tree, then translate the tree into an
equivalent set of rules-one rule for each leaf node in the tree. A second method,
illustrated in Chapter 9, is to use a genetic algorithm that encodes each rule set
as a bit string and uses genetic search operators to explore this hypothesis space.
In this chapter we explore a variety of algorithms that directly learn rule sets and
that differ from these algorithms in two key respects. First, they are designed to
learn sets of first-order rules that contain variables. This is significant because
first-order rules are much more expressive than propositional rules. Second, the
algorithms discussed here use sequential covering algorithms that learn one rule
at a time to incrementally grow the final set of rules.

As an example of first-order rule sets, consider the following two rules
that jointly describe the target concept Ancestor. Here we use the predicate
Parent(x, y) to indicate that y is the mother or father of x, and the predicate
Ancestor(x, y) to indicate that y is an ancestor of x related by an arbitrary num-
ber of family generations.

IF Parent (x, y) THEN Ancestor(x,y)
IF Parent(x, z) A Ancestor(z, y) THEN Ancestor(x, y)

Note these two rules compactly describe a recursive function that would be very
difficult to represent using a decision tree or other propositional representation.
One way to see the representational power of first-order rules is to consider the
general purpose programming language PROLOG. In PROLOG, programs are sets of
first-order rules such as the two shown above (rules of this form are also called
Horn clauses). In fact, when stated in a slightly different syntax the above rules
form a valid PROLOG program for computing the Ancestor relation. In this light,
a general purpose algorithm capable of learning such rule sets may be viewed
as an algorithm for automatically inferring PROLOG programs from examples. In
this chapter we explore learning algorithms capable of learning such rules, given
appropriate sets of training examples.

In practice, learning systems based on first-order representations have been
successfully applied to problems such as learning which chemical bonds fragment
in a mass spectrometer (Buchanan 1976; Lindsay 1980), learning which chemical
substructures produce mutagenic activity (a property related to carcinogenicity)
(Srinivasan et al. 1994), and learning to design finite element meshes to analyze
stresses in physical structures (Dolsak and Muggleton 1992). In each of these
applications, the hypotheses that must be represented involve relational assertions
that can be conveniently expressed using first-order representations, while they
are very difficult to describe using propositional representations.

In this chapter we begin by considering algorithms that learn sets of propo-
sitional rules; that is, rules without variables. Algorithms for searching the hy-
pothesis space to learn disjunctive sets of rules are most easily understood in
this setting. We then consider extensions of these algorithms to learn first-order
rules. Two general approaches to inductive logic programming are then consid-
ered, and the fundamental relationship between inductive and deductive inference
is explored.

10.2 SEQUENTIAL COVERING ALGORITHMS
Here we consider a family of algorithms for learning rule sets based on the strategy
of learning one rule, removing the data it covers, then iterating this process. Such
algorithms are called sequential covering algorithms. To elaborate, imagine we
have a subroutine LEARN-ONE-RULE that accepts a set of positive and negative
training examples as input, then outputs a single rule that covers many of the

positive examples and few of the negative examples. We require that this iaarput
rule have high accuracy, but not necessarily high coverage. By high accuracy, we
mean the predictions it makes should be correct. By accepting low coverage, we
mean it need not make predictions for every training example.

Given this LEARN-ONE-RULE subroutine for learning a single rule, one obvi-
ous approach to learning a set of rules is to invoke LEARN-ONE-RULE on all the
available training examples, remove any positive examples covered by the rule it
learns, then invoke it again to learn a second rule based on the remaining train-
ing examples. This procedure can be iterated as many times as desired to learn
a disjunctive set of rules that together cover any desired fraction of the positive
examples. This is called a sequential covering algorithm because it sequentially
learns a set of rules that together cover the full set of positive examples. The
final set of rules can then be sorted so that more accurate rules will be considered
first when a new instance must be classified. A prototypical sequential covering
algorithm is described in Table 10.1.

This sequential covering algorithm is one of the most widespread approaches
to learning disjunctive sets of rules. It reduces the problem of learning a disjunc-
tive set of rules to a sequence of simpler problems, each requiring that a single
conjunctive rule be learned. Because it performs a greedy search, formulating a
sequence of rules without backtracking, it is not guaranteed to find the smallest
or best set of rules that cover the training examples.

How shall we design LEARN-ONE-RULE to meet the needs of the sequential
covering algorithm? We require an algorithm that can formulate a single rule
with high accuracy, but that need not cover all of the positive examples. In this
section we present a variety of algorithms and describe the main variations that
have been explored in the research literature. In this section we consider learning
only propositional rules. In later sections, we extend these algorithms to learn
first-order Horn clauses.

S E Q U E N T I A L - C O V E R I N G (T ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ , Attributes, Examples, Threshold)
0 Learnedxules c {}
0 Rule c ~ ~ ~ ~ ~ - o ~ ~ - ~ ~ ~ ~ (T a r g e t a t t r i b u t e , Attributes, Examples)
0 while PERFORMANCE(RU~~, Examples) > Threshold, do

0 L e a r n e d ~ u l e s c Learnedxules + Rule
0 Examples c Examples - {examples correctly classified by Rule]
0 Rule c ~~~~~-oN~-RuL~(Targetllttribute, Attributes, Examples)

0 Learnedxules c sort Learned-rules accord to PERFORMANCE over Examples
0 return Learnedxules

TABLE 10.1
The sequential covering algorithm for learning a disjunctive set of rules. LEARN-ONE-RULE must
return a single rule that covers at least some of the Examples. PERFORMANCE is a user-provided
subroutine to evaluate rule quality. This covering algorithm learns rules until it can no longer learn
a rule whose performance is above the given Threshold.

10.2.1 General to Specific Beam Search
One effective approach to implementing LEARN-ONE-RULE is to organize the hy-
pothesis space search in the same general fashion as the ID3 algorithm, but to
follow only the most promising branch in the tree at each step. As illustrated in the
search tree of Figure 10.1, the search begins by considering the most general rule
precondition possible (the empty test that matches every instance), then greed-
ily adding the attribute test that most improves rule performance measured over
the training examples. Once this test has been added, the process is repeated by
greedily adding a second attribute test, and so on. Like ID3, this process grows the
hypothesis by greedily adding new attribute tests until the hypothesis reaches an
acceptable level of performance. Unlike ID3, this implementation of LEARN-ONE-
RULE follows only a single descendant at each search step-the attribute-value
pair yielding the best performance-rather than growing a subtree that covers all
possible values of the selected attribute.

This approach to implementing LEARN-ONE-RULE performs a general-to-
specific search through the space of possible rules in search of a rule with high
accuracy, though perhaps incomplete coverage of the data. As in decision tree
learning, there are many ways to define a measure to select the "best" descendant.
To follow the lead of ID3 let us for now define the best descendant as the one
whose covered examples have the lowest entropy (recall Equation f3.31).

The general-to-specific search suggested above for the LEARN-ONE-RULE al-
gorithm is a greedy depth-first search with no backtracking. As with any greedy

IF
THEN PlayTennis=yes

IF Wind=strong t IF Humidity=high
THEN PlayTennis=no IF Hum'ditv=norntal THEN PlayTennis=no

THEN PlayTennis=yes

IF Humidify=normal
Wind=weak

T H E N PlayTennis=yes IF Humidity=normal A/\\----- IF Humidity=nowl ...
Wind=strong IF Humidity=normal Outlook=rain

THEN PlayTennis=yes Outlook=sunny THEN PlnyTennis=yes
THEN PlayTennis=yes

FIGURE 10.1
The search for rule preconditions as LEARN-ONE-RULE proceeds from general to specific. At each
step, the preconditions of the best rule are specialized in all possible ways. Rule postconditions are
determined by the examples found to satisfy the preconditions. This figure illustrates a beam search
of width 1.

search, there is a danger that a suboptimal choice will be made at any step. To
reduce this risk, we can extend the algorithm to perform a beam search; that is,
a search in which the algorithm maintains a list of the k best candidates at each
step, rather than a single best candidate. On each search step, descendants (spe-
cializations) are generated for each of these k best candidates, and the resulting
set is again reduced to the k most promising members. Beam search keeps track
of the most promising alternatives to the current top-rated hypothesis, so that all
of their successors can be considered at each search step. This general to specific
beam search algorithm is used by the CN2 program described by Clark and Niblett
(1989). The algorithm is described in Table 10.2.

L E A R N - O N E - R U L E (T ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ U ~ ~ , Attributes, Examples, k)
Returns a single rule that covers some of the Examples. Conducts a generalJotospec$c
greedy beam search for the best rule, guided by the PERFORMANCE metric.

a Initialize Besthypothesis to the most general hypothesis 0
a Initialize Candidatehypotheses to the set (Besthypothesis)
a While Candidatehypotheses is not empty, Do

I . Generate the next more spec@ candidatehypotheses
a Allronstraints c the set of all constraints of the form (a = v) , where a is a member

of Attributes, and v is a value of a that occurs in the current set of Examples
a Newrandidatehypotheses c

for each h in Candidatehypotheses,
for each c in Alll-onstraints,

create a specialization of h by adding the constraint c
a Remove from Newl-andidatehypotheses any hypotheses that are duplicates, inconsis-

tent, or not maximally specific
2. Update Besthypothesis

a For all h in Newnandidatehypotheses do
a If PERFORMANCE(^, Examples, Targetattribute)

z PERFORMANCE(Besthypothesis, Examples, Targetattribute))
Then Besthypothesis t h

3. Update Candidatehypotheses
a Candidatehypotheses c the k best members of New-candidatehypotheses, according

to the PERFORMANCE measure.
a Return a rule of the form

"IF Best hypothesis THEN prediction"
where prediction is the most frequent value of Targetattribute among those Examples
that match Besthypothesis.

PERM)RMANCE(~, Examples, Target attribute)
a hxxamples t the subset of Examples that match h

return -Entropy(hxxarnples), where entropy is with respect to Targetattribute

TABLE 10.2
One implementation for LEARN-ONE-RULE is a general-to-specific beam search. The frontier of current
hypotheses is represented by the variable Candidatehypotheses. This algorithm is similar to that
used by the CN2 program, described by Clark and Niblett (1989).

A few remarks on the LEARN-ONE-RULE algorithm of Table 10.2 are in order.
First, note that each hypothesis considered in the main loop of the algorithm is
a conjunction of attribute-value constraints. Each of these conjunctive hypotheses
corresponds to a candidate set of preconditions for the rule to be learned and is
evaluated by the entropy of the examples it covers. The search considers increas-
ingly specific candidate hypotheses until it reaches a maximally specific hypothesis
that contains all available attributes. The rule that is output by the algorithm is the
rule encountered during the search whose PERFORMANCE is greatest-not necessar-
ily the final hypothesis generated in the search. The postcondition for the output
rule is chosen only in the final step of the algorithm, after its precondition (rep-
resented by the variable Besthypothesis) has been determined. The algorithm
constructs the rule postcondition to predict the value of the target attribute that
is most common among the examples covered by the rule precondition. Finally,
note that despite the use of beam search to reduce the risk, the greedy search may
still produce suboptimal rules. However, even when this occurs the SEQUENTIAL-
COVERING algorithm can still learn a collection of rules that together cover the
training examples, because it repeatedly calls LEARN-ONE-RULE on the remaining
uncovered examples.

10.2.2 Variations
The SEQUENTIAL-COVERING algorithm, together with the LEARN-ONE-RULE algo-
rithm, learns a set of if-then rules that covers the training examples. Many varia-
tions on this approach have been explored. For example, in some cases it might
be desirable to have the program learn only rules that cover positive examples
and to include a "default" that assigns a negative classification to instances not
covered by any rule. This approach might be desirable, say, if one is attempting
to learn a target concept such as "pregnant women who are likely to have twins."
In this case, the fraction of positive examples in the entire population is small, so
the rule set will be more compact and intelligible to humans if it identifies only
classes of positive examples, with the default classification of all other examples
as negative. This approach also corresponds to the "negation-as-failure" strategy
of PROLOG, in which any expression that cannot be proven to be true is by default
assumed to be false. In order to learn such rules that predict just a single target
value, the LEARN-ONE-RULE algorithm can be modified to accept an additional in-
put argument specifying the target value of interest. The general-to-specific beam
search is conducted just as before, changing only the PERFORMANCE subroutine
that evaluates hypotheses. Note the definition of PERFORMANCE as negative en-
tropy is no longer appropriate in this new setting, because it assigns a maximal
score to hypotheses that cover exclusively negative examples, as well as those
that cover exclusively positive examples. Using a measure that evaluates the frac-
tion of positive examples covered by the hypothesis would be more appropriate
in this case.

Another variation is provided by a family of algorithms called AQ (Michal-
ski 1969, Michalski et al. 1986), that predate the CN2 algorithm on which the

above discussion is based. Like CN2, AQ learns a disjunctive set of rules that
together cover the target function. However, AQ differs in several ways from
the algorithms given here. First, the covering algorithm of AQ differs from the
SEQUENTIAL-COVERING algorithm because it explicitly seeks rules that cover a par-
ticular target value, learning a disjunctive set of rules for each target value in
turn. Second, AQ's algorithm for learning a single rule differs from LEARN-ONE-
RULE. While it conducts a general-to-specific beam search for each rule, it uses a
single positive example to focus this search. In particular, it considers only those
attributes satisfied by the positive example as it searches for progressively more
specific hypotheses. Each time it learns a new rule it selects a new positive ex-
ample from those that are not yet covered, to act as a seed to guide the search for
this new disjunct.

10.3 LEARNING RULE SETS: SUMMARY
The SEQUENTIAL-COVERING algorithm described above and the decision tree learn-
ing algorithms of Chapter 3 suggest a variety of possible methods for learning
sets of rules. This section considers several key dimensions in the design space
of such rule learning algorithms.

First, sequential covering algorithms learn one rule at a time, removing
the covered examples and repeating the process on the remaining examples. In
contrast, decision tree algorithms such as ID3 learn the entire set of disjuncts
simultaneously as part of the single search for an acceptable decision tree. We
might, therefore, call algorithms such as ID3 simultaneous covering algorithms, in
contrast to sequential covering algorithms such as CN2. Which should we prefer?
The key difference occurs in the choice made at the most primitive step in the
search. At each search step ID3 chooses among alternative attributes by com-
paring the partitions of the data they generate. In contrast, CN2 chooses among
alternative attribute-value pairs, by comparing the subsets of data they cover.
One way to see the significance of this difference is to compare the number of
distinct choices made by the two algorithms in order to learn the same set of
rules. To learn a set of n rules, each containing k attribute-value tests in their
preconditions, sequential covering algorithms will perform n . k primitive search
steps, making an independent decision to select each precondition of each rule.
In contrast, simultaneous covering algorithms will make many fewer independent
choices, because each choice of a decision node in the decision tree corresponds
to choosing the precondition for the multiple rules associated with that node. In
other words, if the decision node tests an attribute that has m possible values, the
choice of the decision node corresponds to choosing a precondition for each of the
m corresponding rules (see Exercise 10.1). Thus, sequential covering algorithms
such as CN2 make a larger number of independent choices than simultaneous
covering algorithms such as ID3. Still, the question remains, which should we
prefer? The answer may depend on how much training data is available. If data is
plentiful, then it may support the larger number of independent decisions required
by the sequential covering algorithm, whereas if data is scarce, the "sharing" of

decisions regarding preconditions of different rules may be more effective. An
additional consideration is the task-specific question of whether it is desirable
that different rules test the same attributes. In the simultaneous covering deci-
sion tree learning algorithms, they will. In sequential covering algorithms, they
need not.

A second dimension along which approaches vary is the direction of the
search in LEARN-ONE-RULE. In the algorithm described above, the search is from
general to specijic hypotheses. Other algorithms we have discussed (e.g., FIND-S
from Chapter 2) search from specijic to general. One advantage of general to
specific search in this case is that there is a single maximally general hypothesis
from which to begin the search, whereas there are very many specific hypotheses
in most hypothesis spaces (i.e., one for each possible instance). Given many
maximally specific hypotheses, it is unclear which to select as the starting point of
the search. One program that conducts a specific-to-general search, called GOLEM
(Muggleton and Feng 1990), addresses this issue by choosing several positive
examples at random to initialize and to guide the search. The best hypothesis
obtained through multiple random choices is then selected.

A third dimension is whether the LEARN-ONE-RULE search is a generate then
test search through the syntactically legal hypotheses, as it is in our suggested
implementation, or whether it is example-driven so that individual training exam-
ples constrain the generation of hypotheses. Prototypical example-driven search
algorithms include the FIND-S and CANDIDATE-ELIMINATION algorithms of Chap-
ter 2, the AQ algorithm, and the CIGOL algorithm discussed later in this chapter.
In each of these algorithms, the generation or revision of hypotheses is driven
by the analysis of an individual training example, and the result is a revised
hypothesis designed to correct performance for this single example. This con-
trasts to the generate and test search of LEARN-ONE-RULE in Table 10.2, in which
successor hypotheses are generated based only on the syntax of the hypothesis
representation. The training data is considered only after these candidate hypothe-
ses are generated and is used to choose among the candidates based on their
performance over the entire collection of training examples. One important ad-
vantage of the generate and test approach is that each choice in the search is
based on the hypothesis performance over many examples, so that the impact
of noisy data is minimized. In contrast, example-driven algorithms that refine
the hypothesis based on individual examples are more easily misled by a sin-
gle noisy training example and are therefore less robust to errors in the training
data.

A fourth dimension is whether and how rules are post-pruned. As in decision
tree learning, it is possible for LEARN-ONE-RULE to formulate rules that perform
very well on the training data, but less well on subsequent data. As in decision
tree learning, one way to address this issue is to post-prune each rule after it
is learned from the training data. In particular, preconditions can be removed
from the rule whenever this leads to improved performance over a set of pruning
examples distinct from the training examples. A more detailed discussion of rule
post-pruning is provided in Section 3.7.1.2.

A final dimension is the particular definition of rule PERFORMANCE used to
guide the search in LEARN-ONE-RULE. Various evaluation functions have been used.
Some common evaluation functions include:

0 Relative frequency. Let n denote the number of examples the rule matches
and let nc denote the number of these that it classifies correctly. The relative
frequency estimate of rule performance is

Relative frequency is used to evaluate rules in the AQ program.
0 m-estimate of accuracy. This accuracy estimate is biased toward the default

accuracy expected of the rule. It is often preferred when data is scarce and
the rule must be evaluated based on few examples. As above, let n and nc
denote the number of examples matched and correctly predicted by the rule.
Let p be the prior probability that a randomly drawn example from the entire
data set will have the classification assigned by the rule (e.g., if 12 out of
100 examples have the value predicted by the rule, then p = .12). Finally,
let m be the weight, or equivalent number of examples for weighting this
prior p. The m-estimate of rule accuracy is

Note if m is set to zero, then the m-estimate becomes the above relative fre-
quency estimate. As m is increased, a larger number of examples is needed
to override the prior assumed accuracy p. The m-estimate measure is advo-
cated by Cestnik and Bratko (1991) and has been used in some versions of
the CN2 algorithm. It is also used in the naive Bayes classifier discussed in
Section 6.9.1.

0 Entropy. This is the measure used by the PERFORMANCE subroutine in the
algorithm of Table 10.2. Let S be the set of examples that match the rule
preconditions. Entropy measures the uniformity of the target function values
for this set of examples. We take the negative of the entropy so that better
rules will have higher scores.

C

-Entropy (S) = pi logl pi

where c is the number of distinct values the target function may take on,
and where pi is the proportion of examples from S for which the target
function takes on the ith value. This entropy measure, combined with a test
for statistical significance, is used in the CN2 algorithm of Clark and Niblett
(1989). It is also the basis for the information gain measure used by many
decision tree learning algorithms.

10.4 LEARNING FIRST-ORDER RULES
In the previous sections we discussed algorithms for learning sets of propositional
(i.e., variable-free) rules. In this section, we consider learning rules that con-
tain variables-in particular, learning first-order Horn theories. Our motivation
for considering such rules is that they are much more expressive than proposi-
tional rules. Inductive learning of first-order rules or theories is often referred to
as inductive logic programming (or L P for short), because this process can be
viewed as automatically inferring PROLOG programs from examples. PROLOG is a
general purpose, Turing-equivalent programming language in which programs are
expressed as collections of Horn clauses.

10.4.1 First-Order Horn Clauses
To see the advantages of first-order representations over propositional (variable-
free) representations, consider the task of learning the simple target concept
Daughter (x , y) , defined over pairs of people x and y. The value of Daughter(x, y)
is True when x is the daughter of y, and False otherwise. Suppose each person
in the data is described by the attributes Name, Mother, Father, Male, Female.
Hence, each training example will consist of the description of two people in
terms of these attributes, along with the value of the target attribute Daughter.
For example, the following is a positive example in which Sharon is the daughter
of Bob:

(Namel = Sharon, Motherl = Louise, Fatherl = Bob,
Malel = False, Female1 = True,
Name2 = Bob, Mother2 = Nora, Father2 = Victor,
Male2 = True, Female2 = False, Daughterl.2 = True)

where the subscript on each attribute name indicates which of the.two persons is
being described. Now if we were to collect a number of such training examples for
the target concept Daughterlv2 and provide them to a propositional rule learner
such as CN2 or C4.5, the result would be a collection of very specific rules
such as

IF (Father1 = Bob) A (Name2 = Bob) A (Femalel = True)
THEN daughter^,^ = True

Although it is correct, this rule is so specific that it will rarely, if ever, be useful in
classifying future pairs of people. The problem is that propositional representations
offer no general way to describe the essential relations among the values of the
attributes. In contrast, a program using first-order representations could learn the
following general rule:

IF Father(y , x) r\ Female(y), THEN Daughter(x, y)

where x and y are variables that can be bound to any person.

First-order Horn clauses may also refer to variables in the preconditions that
do not occur in the postconditions. For example, one rule for GrandDaughter
might be

IF Father(y, z) A Mother(z, x) A Female(y)
THEN GrandDaughter(x, y)

Note the variable z in this rule, which refers to the father of y, is not present in the
rule postconditions. Whenever such a variable occurs only in the preconditions,
it is assumed to be existentially quantified; that is, the rule preconditions are
satisfied as long as there exists at least one binding of the variable that satisfies
the corresponding literal.

It is also possible to use the same predicates in the rule postconditions and
preconditions, enabling the description of recursive rules. For example, the two
rules at the beginning of this chapter provide a recursive definition of the concept
Ancestor (x , y) . ILP learning methods such-as those described below have been
demonstrated to learn a variety of simple recursive functions, such as the above
Ancestor function, and functions for sorting the elements of a list, removing a
specific element from a list, and appending two lists.

POs4.2 Terminology
Before moving on to algorithms for learning sets of Horn clauses, let us intro-
duce some basic terminology from formal logic. All expressions are composed
of constants (e.g., Bob, Louise), variables (e.g., x, y), predicate symbols (e.g.,
Married, Greater-Than), and function symbols (e.g., age). The difference be-
tween predicates and functions is that predicates take on values of True or False,
whereas functions may take on any constant as their value. We will use lowercase
symbols for variables and capitalized symbols for constants. Also, we will use
lowercase for functions and capitalized symbols for predicates.

From these symbols, we build up expressions as follows: A term is any con-
stant, any variable, or any function applied to any term (e.g., Bob, x, age(Bob)).
A literal is any predicate or its negation applied to any term (e.g., Married(Bob,
Louise), -Greater-Than(age(Sue), 20)). If a literal contains a negation (1) sym-
bol, we call it a negative literal, otherwise a positive literal.

A clause is any disjunction of literals, where all variables are assumed to be
universally quantified. A Horn clause is a clause containing at most one positive
literal, such as

where H is the positive literal, and -Ll . . . -Ln are negative literals. Because of
the equalities (B v -A) = (B t A) and - (A A B) = (-A v -B) , the above Horn
clause can alternatively be written in the form

Every well-formed expression is composed of constants (e.g., Mary, 23, or Joe), variables (e.g.,
x), predicates (e.g., Female, as in Female(Mary)), and functions (e.g., age, as in age(Mary)).
A term is any constant, any variable, or any function applied to any term. Examples include Mary,
x, age(Mary), age(x).
A literal is any predicate (or its negation) applied to any set of terms. Examples include
Femal e(Mary), - Female(x), Greaterf han (age(Mary), 20).
A ground literal is a literal that does not contain any variables (e.g., -Female(Joe)).
A negative literal is a literal containing a negated predicate (e.g., -Female(Joe)).
A positive literal is a literal with no negation sign (e.g., Female(Mary)).
A clause is any disjunction of literals M1 v . . . Mn whose variables are universally quantified.
A Horn clause is an expression of the form

where H, L1 . . . Ln are positive literals. H is called the head or consequent of the Horn clause.
The conjunction of literals L1 A L2 A .. . A L, is called the body or antecedents of the Horn clause.
For any literals A and B, the expression (A t B) is equivalent to (A v -B), and the expression
-(A A B) is equivalent to (-A v -B). Therefore, a Horn clause can equivalently be written as the
disjunction

Hv-L1 v. . .v-L,

A substitution is any function that replaces variables by terms. For example, the substitution
{x/3, y/z) replaces the variable x by the term 3 and replaces the variable y by the term z. Given
a substitution 0 and a literal L we write LO to denote the result of applying substitution 0 to L.
A unrfying substitution for two literals L1 and L2 is any substitution 0 such that L10 = L1B.

TABLE 10.3
Basic definitions from first-order logic.

which is equivalent to the following, using our earlier rule notation

IF L1 A ... A L,, THEN H

Whatever the notation, the Horn clause preconditions L1 A . . . A L, are called the
clause body or, alternatively, the clause antecedents. The literal H that forms the
postcondition is called the clause head or, alternatively, the clause consequent.
For easy reference, these definitions are summarized in Table 10.3, along with
other definitions introduced later in this chapter.

10.5 LEARNING SETS OF FIRST-ORDER RULES: FOIL
A variety of algorithms has been proposed for learning first-order rules, or Horn
clauses. In this section we consider a program called FOIL (Quinlan 1990) that
employs an approach very similar to the SEQUENTIAL-COVERING and LEARN-ONE-
RULE algorithms of the previous section. In fact, the FOIL program is the natural
extension of these earlier algorithms to first-order representations. Formally, the
hypotheses learned by FOIL are sets of first-order rules, where each rule is sim-
ilar to a Horn clause with two exceptions. First, the rules learned by FOIL are

more restricted than general Horn clauses, because the literals are not pennitted
to contain function symbols (this reduces the complexity of the hypothesis space
search). Second, FOIL rules are more expressive than Horn clauses, because the
literals appearing in the body of the rule may be negated. FOIL has been applied
to a variety of problem domains. For example, it has been demonstrated to learn a
recursive definition of the QUICKSORT algorithm and to learn to discriminate legal
from illegal chess positions.

The FOIL algorithm is summarized in Table 10.4. Notice the outer loop
corresponds to a variant of the SEQUENTIAL-COVERING algorithm discussed earlier;
that is, it learns new rules one at a time, removing the positive examples covered by
the latest rule before attempting to learn the next rule. The inner loop corresponds
to a variant of our earlier LEARN-ONE-RULE algorithm, extended to accommodate
first-order rules. Note also there are a few minor differences between FOIL and
these earlier algorithms. In particular, FOIL seeks only rules that predict when
the target literal is True, whereas our earlier algorithm would seek both rules
that predict when it is True and rules that predict when it is False. Also, FOIL
performs a simple hillclimbing search rather than a beam search (equivalently, it
uses a beam of width one).

The hypothesis space search performed by FOIL is best understood by view-
ing it hierarchically. Each iteration through FOIL'S outer loop adds a new rule to
its disjunctive hypothesis, Learned~ules . The effect of each new rule is to gen-

--

FOIL(Target-predicate, Predicates, Examples)
Pos c those Examples for which the Target-predicate is True
Neg c those Examples for which the Target-predicate is False

while Pos, do
Learn a NewRule

New Rule t the rule that predicts Target-predicate with no preconditions
NewRuleNeg t Neg
while NewRuleNeg, do

Add a new literal to specialize New Rule
Candidateliterals t generate candidate new literals for NewRule, based on
Predicates
B e s t l i t e r a l t argmax Foil-Gain(L,NewRule)

LECandidateliterals
add Bestl i teral to preconditions of NewRule
NewRuleNeg c subset of NewRuleNeg that satisfies NewRule preconditions

L e a r n e d ~ u l es c Learned-rules + NewRule
Pos t Pos - {members of Pos covered by NewRule)

Return Learned-rules

TABLE 10.4
The basic FOIL algorithm. The specific method for generating Candidatel i terals and the defini-

~

tion of Foil-Gain are given in the text. This basic algorithm can be modified slightly to better
accommodate noisy data, as described in the text.

eralize the current disjunctive hypothesis (i.e., to increase the number of instances
it classifies as positive), by adding a,new disjunct. Viewed at this level, the search
is a specific-to-general search through the space of hypotheses, beginning with the
most specific empty disjunction and terminating when the hypothesis is sufficiently
general to cover all positive training examples. The inner loop of FOIL performs a
finer-grained search to determine the exact definition of each new rule. This inner
loop searches a second hypothesis space, consisting of conjunctions of literals, to
find a conjunction that will form the preconditions for the new rule. Within this
hypothesis space, it conducts a general-to-specific, hill-climbing search, beginning
with the most general preconditions possible (the empty precondition), then adding
literals one at a time to specialize the rule until it avoids all negative examples.

The two most substantial differences between FOIL and our earlier
SEQUENTIAL-COVERING and LEARN-ONE-RULE algorithm follow from the require-
ment that it accommodate first-order rules. These differences are:

1. In its general-to-specific search to 'learn each new rule, FOIL employs dif-
ferent detailed steps to generate candidate specializations of the rule. This
difference follows from the need to accommodate variables in the rule pre-
conditions.

2. FOIL employs a PERFORMANCE measure, Foil-Gain, that differs from the
entropy measure shown for LEARN-ONE-RULE in Table 10.2. This difference
follows from the need to distinguish between different bindings of the rule
variables and from the fact that FOIL seeks only rules that cover positive
examples.

The following two subsections consider these two differences in greater
detail.

10.5.1 Generating Candidate Specializations in FOIL
To generate candidate specializations of the current rule, FOIL generates a variety
of new literals, each of which may be individually added to the rule preconditions.
More precisely, suppose the current rule being considered is

where L1.. . L, are literals forming the current rule preconditions and where
P(x1, x2, . . . , xk) is the literal that forms the rule head, or postconditions. FOIL
generates candidate specializations of this rule by considering new literals L,+I
that fit one of the following forms:

Q (v l , . . . , v,), where Q is any predicate name occurring in Predicates and
where the vi are either new variables or variables already present in the rule.
At least one of the vi in the created literal must already exist as a variable
in the rule.

a Equal(xj , xk), where xi and xk are variables already present in the rule.

0 The negation of either of the above forms of literals.

To illustrate, consider learning rules to predict the target literal Grand-
Daughter(x, y) , where the other predicates used to describe examples are Father
and Female. The general-to-specific search in FOIL begins with the most general
rule

GrandDaughter(x, y) t
which asserts that GrandDaughter(x, y) is true of any x and y. To specialize
this initial rule, the above procedure generates the following literals as candi-
date additions to the rule preconditions: Equal (x , y) , Female(x), Female(y),
Father(x, y) , Father(y, x) , Father(x, z) , Father(z, x) , Father(y, z) , Father-
(z , y) , and the negations of each of these literals (e.g., -Equal(x, y)) . Note that
z is a new-variable here, whereas x and y exist already within the current rule.

Now suppose that among the above literals FOIL greedily selects Father-
(y , z) as the most promising, leading to the more specific rule

GrandDaughter(x, y) t Father(y , z)
In generating candidate literals to further specialize this rule, FOIL will now con-
sider all of the literals mentioned in the previous step, plus the additional literals
Female(z) , Equal(z, x) , Equal(z, y) , Father(z, w) , Father(w, z) , and their nega-
tions. These new literals are considered at this point because the variable z was
added to the rule in the previous step. Because of this, FOIL now considers an
additional new variable w .

If FOIL at this point were to select the literal Father(z, x) and on the
next iteration select the literal Female(y), this would lead to the following rule,
which covers only positive examples and hence terminates the search for further
specializations of the rule.

At this point, FOIL will remove all positive examples covered by this new
rule. If additional positive examples remain to be covered, then it will begin yet
another general-to-specific search for an additional rule.

10.5.2 Guiding the Search in FOIL
To select the most promising literal from the candidates generated at each step,
FOIL considers the performance of the rule over the training data. In doing this,
it considers all possible bindings of each variable in the current rule. To illustrate
this process, consider again the example in which we seek to learn a set of rules
for the target literal GrandDaughter(x, y) . For illustration, assume the training
data includes the following simple set of assertions, where we use the convention
that P (x , y) can be read as "The P of x is y ."

GrandDaughter(Victor, Sharon) Father(Sharon, Bob) Father(Tom, Bob)
Female(Sharon) Father(Bob, V ic tor)

Here let us also make the closed world assumption that any literal involving the
predicate GrandDaughter, Father, or Female and the constants Victor, Sharon,
Bob, and Tom that is not listed above can be assumed to be false (i.e., we also im-
plicitly assert -.GrandDaughter(Tom, Bob), -GrandDaughter(Victor, Victor),
etc.).

To select the best specialization of the current rule, FOIL considers each
distinct way in which the rule variables can bind to constants in the training
examples. For example, in the initial step when the rule is

the rule variables x and y are not constrained by any preconditions and may
therefore bind in any combination to the four constants Victor, Sharon, Bob, and
Tom. We will use the notation {x/Bob, y/Shar on} to denote a particular variable
binding; that is, a substitution mapping each variable to a constant. Given the four
possible constants, there are 16 possible variable bindings for this initial rule. The
binding {xlvictor, ylSharon} corresponds to a positive example binding, be-
cause the training data includes the assertion GrandDaughter(Victor, Sharon).
The other 15 bindings allowed by the rule (e.g., the binding {x/Bob, y/Tom})
constitute negative evidence for the rule in the current example, because no cor-
responding assertion can be found in the training data.

At each stage, the rule is evaluated based on these sets of positive and neg-
ative variable bindings, with preference given to rules that possess more positive
bindings and fewer negative bindings. As new literals are added to the rule, the
sets of bindings will change. Note if a literal is added that introduces a new
variable, then the bindings for the rule will grow in length (e.g., if Father(y, z)
is added to the above rule, then the original binding {x lv ic tor , y/Sharon) will
become the more lengthy {xlvictor, ylSharon, z/Bob}. Note also that if the new
variable can bind to several different constants, then the number of bindings fitting
the extended rule can be greater than the number associated with the original rule.

The evaluation function used by FOIL to estimate the utility of adding a
new literal is based on the numbers of positive and negative bindings covered
before and after adding the new literal. More precisely, consider some rule R, and
a candidate literal L that might be added to the body of R. Let R' be the rule
created by adding literal L to rule R. The value Foil-Gain(L, R) of adding L to
R is defined as

P1) (10.1) Foil -Gain(L, R) = t - - log2 -
P1+ nl PO + no

where po is the number of positive bindings of rule R, no is the number of
negative bindings of R, pl is the number of positive bindings of rule R', and
nl is the number of negative bindings of R'. Finally, t is the number of positive
bindings of rule R that are still covered after adding literal L to R. When a new
variable is introduced into R by adding L, then any original binding is considered
to be covered so long as some binding extending it is present in the bindings
of R'.

This Foil-Gain function has a straightforward interpretation in terms of
information theory. According to information theory, - log2 --/& is the minimum
number of bits needed to encode the classification of an arbitrary positive binding
among the bindings covered by rule R. Similarly, -log2 A is the number
of bits required if the binding is one of those covered by rule R'. Since t is
just the number of positive bindings covered by R that remain covered by R',
Foil-Gain(L, R) can be seen as the reduction due to L in the total number of
bits needed to encode the classification of all positive bindings of R .

10.5.3 Learning Recursive Rule Sets
In the above discussion, we ignored the possibility that new literals added to the
rule body could refer to the target predicate itself (i.e., the predicate occurring
in the rule head). However, if we include the target predicate in the input list of
Predicates, then FOIL will consider it as well when generating candidate literals.
This will allow it to form recursive rules-rules that use the same predicate in
the body and the head of the rule. For instance, recall the following rule set that
provides a recursive definition of the Ancestor relation.

IF Parent (x, y) THEN Ancestor(x, y)
IF Parent (x, z) A Ancestor(z, y) THEN Ancestor@, y)

Given an appropriate set of training examples, these two rules can be learned
following a trace similar to the one above for GrandDaughter. Note the second
rule is among the rules that are potentially within reach of FOIL'S search, provided
Ancestor is included in the list Predicates that determines which predicates may
be considered when generating new literals. Of course whether this particular
rule would be learned or not depends on whether these particular literals outscore
competing candidates during FOIL'S greedy search for increasingly specific rules.
Cameron-Jones and Quinlan (1993) discuss several examples in which FOIL has
successfully discovered recursive rule sets. They also discuss important subtleties
that arise, such as how to avoid learning rule sets that produce infinite recursion.

10.5.4 Summary of FOIL
To summarize, FOIL extends the sequential covering algorithm of CN2 to handle
the case of learning first-order rules similar to Horn clauses. To learn each rule
FOIL performs a general-to-specific search, at each step adding a single new literal
to the rule preconditions. The new literal may refer to variables already mentioned
in the rule preconditions or postconditions, and may introduce new variables as
well. At each step, it uses the Foil-Gain function of Equation (10.1) to select
among the candidate new literals. If new literals are allowed to refer to the target
predicate, then FOIL can, in principle, learn sets of recursive rules. While this in-
troduces the complexity of avoiding rule sets that result in infinite recursion, FOIL
has been demonstrated to successfully learn recursive rule sets in several cases.

In the case of noise-free training data, FOIL may continue adding new literals
to the rule until it covers no negative examples. To handle noisy data, the search
is continued until some tradeoff occurs between rule accuracy, coverage, and
complexity. FOIL uses a minimum description length approach to halt the growth
of rules, in which new literals are added only when their description length is
shorter than the description length of the training data they explain. The details
of this strategy are given in Quinlan (1990). In addition, FOIL post-prunes each
rule it learns, using the same rule post-pruning strategy used for decision trees
(Chapter 3).

10.6 INDUCTION AS INVERTED DEDUCTION
A second, quite different approach to inductive logic programming is based on
the simple observation that induction is just the inverse of deduction! In general,
machine learning involves building theories that explain the observed data. Given
some data D and some partial background knowledge B, learning can be described
as generating a hypothesis h that, together with B, explains D. Put more precisely,
assume as usual that the training data D is a set of training examples, each of
the form (xi, f (xi)). Here xi denotes the ith training instance and f (xi) denotes
its target value. Then learning is the problem of discovering a hypothesis h, such
that the classification f (xi) of each training instance xi follows deductively from
the hypothesis h, the description of xi, and any other background knowledge B
known to the system.

(V(xi, f (xi)) E D) (B Ah A xi) f (xi) (10.2)
The expression X F Y is read "Y follows deductively from X," or alternatively
"X entails Y." Expression (10.2) describes the constraint that must be satisfied
by the learned hypothesis h; namely, for every training instance xi, the target
classification f (xi) must follow deductively from B, h, and xi.

As an example, consider the case where the target concept to be learned is
"pairs of people (u, v) such that the child of u is v," represented by the predicate
Child(u, v). Assume we are given a single positive example Child(Bob, Sharon),
where the instance is described by the literals Male(Bob), Female(Sharon), and
Father(Sharon, Bob). Furthermore, suppose we have the general background
knowledge Parent (u, v) t Father (u, v). We can describe this situation in the
terms of Equation (10.2) as follows:

xi : Male(Bob), Female(Sharon), Father(Sharon, Bob)

f (xi) : Child(Bob, Sharon)

In this case, two of the many hypotheses that satisfy the constraint (B Ah A xi) t-
f (xi) are

hl : Child(u, v) t Father(v, u)
h2 : Child(u, v) t Parent (v, u)

Note that the target literal Child(Bob, Sharon) is entailed by hl AX^ with no need
for the background information B. In the case of hypothesis h2, however, the
situation is different. The target Child(Bob, Sharon) follows from B ~ h 2 AX^, but
not from h2 AX^ alone. This example illustrates the role of background knowledge
in expanding the set of acceptable hypotheses for a given set of training data. It also
illustrates how new predicates (e.g., Parent) can be introduced into hypotheses
(e.g., h2), even when the predicate is not present in the original description of the
instance xi. This process of augmenting the set of predicates, based on background
knowledge, is often referred to as constructive induction.

The significance of Equation (10.2) is that it casts the learning problem in the
framework of deductive inference and formal logic. In the case of propositional
and first-order logics, there exist well-understood algorithms for automated deduc-
tion. Interestingly, it is possible to develop inverses of these procedures in order
to automate the process of inductive generalization. The insight that induction
might be performed by inverting deduction appears to have been first observed
by the nineteenth century economist W. S. Jevons, who wrote:

Induction is, in fact, the inverse operation of deduction, and cannot be con-
ceived to exist without the corresponding operation, so that the question of relative
importance cannot arise. Who thinks of asking whether addition or subtraction is
the more important process in arithmetic? But at the same time much difference in
difficulty may exist between a direct and inverse operation; . . . it must be allowed
that inductive investigations are of a far higher degree of difficulty and complexity
than any questions of deduction.. . . (Jevons 1874)

In the remainder of this chapter we will explore this view of induction
as the inverse of deduction. The general issue we will be interested in here is
designing inverse entailment operators. An inverse entailment operator, O(B, D)
takes the training data D = { (x i , f (xi))} and background knowledge B as input
and produces as output a hypothesis h satisfying Equation (10.2).

O(B, D) = h such that (V(xi, f (xi)) E D) (B ~h A xi) F f (xi)
Of course there will, in general, be many different hypotheses h that satisfy
(V(X~ , f (xi)) E D) (B A h A xi) F f (xi). One common heuristic in ILP for choos-
ing among such hypotheses is to rely on the heuristic known as the Minimum
Description Length principle (see Section 6.6).

There are several attractive features to formulating the learning task as find-
ing a hypothesis h that solves the relation (V(xi, f (xi)) E D) (B A h A xi) F f (xi).

0 This formulation subsumes the common definition of learning as finding
some general concept that matches a given set of training examples (which
corresponds to the special case where no background knowledge B is avail-
able).

0 By incorporating the notion of background information B, this formulation
allows a more rich definition of when a hypothesis may be said to "fit"
the data. Up until now, we have always determined whether a hypothesis

(e.g., neural network) fits the data based solely on the description of the
hypothesis and data, independent of the task domain under study. In contrast,
this formulation allows the domain-specific background information B to
become part of the definition of "fit." In particular, h fits the training example
(xi, f (xi)) as long as f (xi) follows deductively from B A h A xi.

0 By incorporating background information B, this formulation invites learning
methods that use this background information to guide the search for h,
rather than merely searching the space of syntactically legal hypotheses.
The inverse resolution procedure described in the following section uses
background knowledge in this fashion.

At the same time, research on inductive logic programing following this
formulation has encountered several practical difficulties.

a The requirement @'(xi, f (xi)) E D) (B A h A xi) t f (xi) does not naturally
accommodate noisy training data. The problem is that this expression does
not allow for the possibility that there may be errors in the observed de-
scription of the instance xi or its target value f (xi). Such errors can produce
an inconsistent set of constraints on h. Unfortunately, most formal logic
frameworks completely lose their ability to distinguish between truth and
falsehood once they are given inconsistent sets of assertions.

0 The language of first-order logic is so expressive, and the number of hy-
potheses that satisfy (V(xi , f (xi)) E D) (B A h A xi) t f (xi) is SO large,
that the search through the space of hypotheses is intractable in the general
case. Much recent work has sought restricted forms of first-order expres-
sions, or additional second-order knowledge, to improve the tractability of
the hypothesis space search.

0 Despite our intuition that background knowledge B should help constrain
the search for a hypothesis, in most ILP systems (including all discussed
in this chapter) the complexity of the hypothesis space search increases as
background knowledge B is increased. (However, see Chapters 11 and 12 for
algorithms that use background knowledge to decrease rather than increase
sample complexity).

In the following section, we examine one quite general inverse entailment
operator that constructs hypotheses by inverting a deductive inference rule.

10.7 INVERTING RESOLUTION
A general method for automated deduction is the resolution rule introduced by
Robinson (1965). The resolution rule is a sound and complete rule for deductive
inference in first-order logic. Therefore, it is sensible to ask whether we can invert
the resolution rule to form an inverse entailment operator. The answer is yes, and
it is just this operator that forms the basis of the CIGOL program introduced by
Muggleton and Buntine (1988).

It is easiest to introduce the resolution rule in propositional form, though it is
readily extended to first-order representations. Let L be an arbitrary propositional
literal, and let P and R be arbitrary propositional clauses. The resolution rule is

P V L
-L v R

P V R

which should be read as follows: Given the two clauses above the line, conclude
the clause below the line. Intuitively, the resolution rule is quite sensible. Given
the two assertions P v L and -L v R , it is obvious that either L or -L must be
false. Therefore, either P or R must be true. Thus, the conclusion P v R of the
resolution rule is intuitively satisfying.

The general form of the propositional resolution operator is described in
Table 10.5. Given two clauses C1 and C2, the resolution operator first identifies
a literal L that occurs as a positive literal in one of these two clauses and as
a negative literal in the other. It then draws the conclusion given by the above
formula. For example, consider the application of the resolution operator illustrated
on the left side of Figure 10.2. Given clauses C1 and C2, the first step of the
procedure identifies the literal L = -KnowMaterial, which is present in C 1 , and
whose negation -(-KnowMaterial) = KnowMaterial is present in C2. Thus the
conclusion is the clause formed by the union of the literals C1- (L } = Pass Exam
and C2 - (-L} = -Study. As another example, the result of applying the resolution
rule to the clauses C1 = A v B v C v -D and C2 = -B v E v F is the clause
A v C V - D v E v F .

It is easy to invert the resolution operator to form an inverse entailment
operator O (C , C 1) that performs inductive inference. In general, the inverse en-
tailment operator must derive one of the initial clauses, C2, given the resolvent C
and the other initial clause C1. Consider an example in which we are given the
resolvent C = A v B and the initial clause C1 = B v D. How can we derive a
clause C2 such that C1 A C2 F C? First, note that by the definition of the resolution
operator, any literal that occurs in C but not in C1 must have been present in C2.
In our example, this indicates that C2 must contain the literal A. Second, the literal

1. Given initial clauses C1 and C2, find a literal L from clause C1 such that -L occurs in clause C2.
2. Form the resolvent C by including all literals from C1 and C2, except for L and -L. More

precisely, the set of literals occurring in the conclusion C is

where u denotes set union, and "-" denotes set difference.

TABLE 10.5
Resolution operator (propositional form). Given clauses C1 and C2, the resolution operator constructs
a clause C such that C1 A C2 k C.

C : KnowMaterial v -Study C : KnowMaterial V 7 S N d y

C : P a s s h v ~KnawMafer ia l C : P I I S S ~ V 1KnowMafcrial
I I

FIGURE 10.2
On the left, an application of the (deductive) resolution rule inferring clause C from the given clauses
C1 and C2. On the right, an application of its (inductive) inverse, inferring Cz from C and C1.

that occurs in C1 but not in C must be the literal removed by the resolution rule,
and therefore its negation must occur in C2. In our example, this indicates that C2
must contain the literal -D. Hence, C:! = A v -D. The reader can easily verify
that applying the resolution rule to C1 and C2 does, in fact, produce the desired
resolvent C.

Notice there is a second possible solution for C2 in the above example. In
particular, C2 can also be the more specific clause A v -D v B. The difference
between this and our first solution is that we have now included in C2 a lit-
eral that occurred in C1. The general point here is that inverse resolution is not
deterministic-in general there may be multiple clauses C2 such that C1 and C2
produce the resolvent C. One heuristic for choosing among the alternatives is to
prefer shorter clauses over longer clauses, or equivalently, to assume C2 shares no
literals in common with C1. If we incorporate this bias toward short clauses, the
general statement of this inverse resolution procedure is as shown in Table 10.6.

We can develop rule-learning algorithms based on inverse entailment op-
erators such as inverse resolution. In particular, the learning algorithm can use
inverse entailment to construct hypotheses that, together with the background
information, entail the training data. One strategy is to use a sequential cover-
ing algorithm to iteratively learn a set of Horn clauses in this way. On each
iteration, the algorithm selects a training example (x i , f (x i)) that is not yet cov-
ered by previously learned clauses. The inverse resolution rule is then applied to

- -- - -

1. Given initial clauses C1 and C, find a literal L that occurs in clause C1, but not in clause C.
2. Form the second clause Cz by including the following literals

TABLE 10.6
Inverse resolution operator (propositional form). Given two clauses C and Cl. this computes a clause
C2 such that C1 A Cz I- C.

generate candidate hypotheses hi that satisfy (B A hi A x i) I- f (x i) , where B is the
background knowledge plus any clauses learned on previous iterations. Note this
is an example-driven search, because each candidate hypothesis is constructed to
cover a particular example. Of course if multiple candidate hypotheses exist, then
one strategy for selecting among them is to choose the one with highest accuracy
over the other examples as well. The CIGOL program uses inverse resolution with
this kind of sequential covering algorithm, interacting with the user along the
way to obtain training examples and to obtain guidance in its search through the
vast space of possible inductive inference steps. However, CIGOL uses first-order
rather than propositional representations. Below we describe the extension of the
resolution rule required to accommodate first-order representations.

10.7.1 First-Order Resolution
The resolution rule extends easily to first-order expressions. As in the propositional
case, it takes two clauses as input and produces a third clause as output. The key
difference from the propositional case is that the process is now based on the
notion of unifying substitutions.

We define a substitution to be any mapping of variables to terms. For ex-
ample, the substitution 6 = {x/Bob, y / z } indicates that the variable x is to be
replaced by the term Bob, and that the variable y is to be replaced by the term
z . We use the notation WO to denote the result of applying the substitution 6 to
some expression W . For example, if L is the literal Father(x, Bill) and 6 is the
substitution defined above, then LO = Father(Bob, Bill) .

We say that 6 is a unifying substitution for two literals L1 and L2, provided
LlO = L2O. For example, if L1 = Father(x, y) , L2 = Father(Bil1, z) , and O =
(x /Bi l l , z / y } , then 6 is a unifying substitution for L1 and L2 because LlO =
L2O = Father(Bil1, y). The significance of a unifying substitution is this: In the
propositional form of resolution, the resolvent of two clauses C1 and C2 is found
by identifying a literal L that appears in C1 such that -L appears in C2. In first-
order resolution, this generalizes to finding one literal L1 from clause C1 and one
literal L2 from C2, such that some unifying substitution 6 can be found for L1
and -L2 (i.e., such that LIO = -L20). The resolution rule then constructs the
resolvent C according to the equation

The general statement of the resolution rule is shown in Table 10.7. To
illustrate, suppose C1 = White(x) t Swan(x) and suppose C2 = Swan(Fred).
To apply the resolution rule, we first re-express C1 in clause form as the equivalent
expression C1 = White(x) v -Swan(x). The resolution rule can now be applied.
In the first step, it finds the literal L1 = -Swan(x) from C1 and the literal L2 =
Swan(Fred) from C2. If we choose the unifying substitution O = {x /Fred} then
these two literals satisfy LIB = -L20 = -Swan(Fred). Therefore, the conclusion
C is the union of (C1 - {L1})O = White(Fred) and (C2 - {L2})0 = 0, or C =
White(Fred).

CHAPTER 10 LEARNING SETS OF RULES 2!)7

1. Find a literal L1 from clause C1, literal Lz from clause Cz, and substitution 0 such that LIB =
-L28.

2. Form the resolvent C by including all literals from CIB and C28, except for L1 B and -L2B. More
precisely, the set of literals occurring in the conclusion C is

c = (Cl - (L11)O lJ (C2 - ILzI)@

TABLE 10.7
Resolution operator (first-order form).

10.7.2 Inverting Resolution: First-Order Case
We can derive the inverse resolution operator analytically, by algebraic manipula-
tion of Equation (10.3) which defines the resolution rule. First, note the unifying
substitution 8 in Equation (10.3) can be uniquely factored into 81 and 82, where
0 = Ole2, where contains all substitutions involving variables from clause C1,
and where O2 contains all substitutions involving variables from C2. This factor-
ization is possible because C1 and C2 will always begin with distinct variable
names (because they are distinct universally quantified statements). Using this
factorization of 8, we can restate Equation (10.3) as

Keep in mind that "-" here stands for set difference. Now if we restrict inverse
resolution to infer only clauses C2 that contain no literals in common with C1
(corresponding to a preference for shortest C2 clauses), then we can re-express
the above as

c - (Cl - {LlHel = (C2 - IL2W2
Finally we use the fact that by definition of the resolution rule L2 = -~1818;',
and solve for C2 to obtain

Inverse resolution:
cz = (c - (CI - { ~ ~ ~) e ~) e , - l u { - ~ , e ~ e ; ' ~ (10.4)

Equation (10.4) gives the inverse resolution rule for first-order logic. As in the
propositional case, this inverse entailment operator is nondeterministic. In partic-
ular, in applying it we may in general find multiple choices for the clause Cr to
be resolved and for the unifying substitutions and 82. Each set of choices may
yield a different solution for C2.

Figure 10.3 illustrates a multistep application of this inverse resolution rule
for a simple example. In this figure, we wish to learn rules for the target predicate
GrandChild(y, x), given the training data D = GrandChild(Bob, Shannon) and
the background information B = {Father (Shannon, Tom), Father (Tom, Bob)).
Consider the bottommost step in the inverse resolution tree of Figure 10.3. Here,
we set the conclusion C to the training example GrandChild(Bob, Shannon)

GrandChild(Bob, Shannon)

Father (Shannon, Tom)

FIGURE 10.3
A multistep inverse resolution. In each case, the boxed clause is the result of the inference step. For
each step, C is the clause at the bottom, C1 the clause to the left, and C2 the boxed clause to the
right. In both inference steps here, el is the empty substitution (1, and 0;' is the substitution shown
below C2. Note the final conclusion (the boxed clause at the top right) is the alternative form of the
Horn clause GrandChild(y, x) c Father(x, z) A Father(z, y) .

GrandChild(Bob,x) v Father(x,Tom) I

and select the clause C1 = Father(Shannon, Tom) from the background in-
formation. To apply the inverse resolution operator we have only one choice
for the literal L 1 , namely Father(Shannon, Tom). Suppose we choose the in-
verse substitutions 9;' = {} and 9;' = {Shannon/x}. In this case, the result-
ing clause C2 is the union of the clause (C - (C1 - { L l }) 9 1) 9 ; ~ = (~ 9 1) 9 ; '
= GrandChild(Bob, x) , and the clause { - ~ ~ 9 ~ 9 , ') = -.Father(x, Tom). Hence
the result is the clause GrandChild(Bob, x) v -Father(x, Tom), or equivalently
(GrandChild(Bob, x) t Father(x, Tom)) . Note this general rule, together with
C1 entails the training example GrandChild(Bob, Shannon).

In similar fashion, this inferred clause may now be used as the conclusion
C for a second inverse resolution step, as illustrated in Figure 10.3. At each such
step, note there are several possible outcomes, depending on the choices for the
substitutions. (See Exercise 10.7.) In the example of Figure 10.3, the particular set
of choices produces the intuitively satisfying final clause GrandChild(y, x) t
Father(x, 2) A Father(z, y) .

10.7.3 Summary of Inverse Resolution
To summarize, inverse resolution provides a general approach to automatically
generating hypotheses h that satisfy the constraint (B A h A xi) t- f (x i) . This is
accomplished by inverting the general resolution rule given by Equation (10.3).
Beginning with the resolution rule and solving for the clause C2, the inverse
resolution rule of Equation (10.4) is easily derived.

Given a set of beginning clauses, multiple hypotheses may be generated by
repeated application of this inverse resolution rule. Note the inverse resolution rule
has the advantage that it generates only hypotheses that satisfy (B ~h AX^) t- f (x i) .

In contrast, the generate-and-test search of FOIL generates many hypotheses at
each search step, including some that do not satisfy this constraint. FOIL then
considers the data D to choose among these hypotheses. Given this difference,
we might expect the search based on inverse resolution to be more focused and
efficient. However, this will not necessarily be the case. One reason is that the
inverse resolution operator can consider only a small fraction of the available
data when generating its hypothesis at any given step, whereas FOIL considers
all available data to select among its syntactically generated hypotheses. The
differences between search strategies that use inverse entailment and those that
use generate-and-test search is a subject of ongoing research. Srinivasan et al.
(1995) provide one experimental comparison of these two approaches.

10.7.4 Generalization, 8-Subsumption, and Entailment
The previous section pointed out the correspondence between induction and in-
verse entailment. Given our earlier focus on using the general-to-specific ordering
to organize the hypothesis search, it is interesting to consider the relationship be-
tween the more-general~han relation and inverse entailment. To illuminate this
relationship, consider the following definitions.

0 more-general-than. In Chapter 2, we defined the more_general_than_or-
equal20 relation (z,) as follows: Given two boolean-valued functions hj(x)
and hk(x), we say that hj 2, hk if and only if (Vx)hk(x) + hj(x). This >,
relation is used by many learning algorithms to guide search through the
hypothesis space.

0 8-subsumption. Consider two clauses Cj and Ck, both of the form H v L1 v
. . . L,, where H is a positive literal, and the Li are arbitrary literals. Clause
Cj is said to 8-subsume clause Ck if and only if there exists a substitution
0 such that CjO G Ck (where we here describe any clause C by the set of
literals in its disjunctive form). This definition is due to Plotkin (1970).

0 Entailment. Consider two clauses Cj and Ck. Clause Cj is said to entail
clause Ck (written Cj k Ck) if and only if Ck follows deductively from C,.

What is the relationship among these three definitions? First, let us re-express
the definition of 2, using the same first-order notation as the other two definitions.
If we consider a boolean-valued hypothesis h(x) for some target concept c(x),
where h(x) is expressed by a conjunction of literals, then we can re-express the
hypothesis as the clause

Here we follow the usual PROLOG interpretation that x is classified a negative
example if it cannot be proven to be a positive example. Hence, we can see that
our earlier definition of 1, applies to the preconditions, or bodies, of Horn clauses.
The implicit postcondition of the Horn clause is the target concept c(x).

What is the relationship between this definition of 2, and the definition
of 8-subsumption? Note that if hl p, h2, then the clause C1 : c (x) t h l (x)
8-subsumes the clause C2 : c (x) t h2(x). Furthermore, 8-subsumption can hold
even when the clauses have different heads. For example, clause A 8-subsumes
clause B in the following case:

A : Mother(x, y) t Father(x, z) A Spouse(z, y)

B : Motker(x, Louise) t Father(x, Bob) A Spouse(Bob, y) A Female@)

because A8 G B if we choose 8 = {y lLouise , z lBob) . The key difference here is
that >, implicitly assumes two clauses for which the heads are the same, whereas
8-subsumption can hold even for clauses with different heads.

Finally, 8-subsumption is a special case of entailment. That is, if clause A
8-subsumes clause B, then A k B . However, we can find clauses A and B such
that A F B, but where A does not 8-subsume B. One example is the following
pair of clauses

A : Elephant(father_of (x)) t Elephant (x)

B : Elephant (f a t h e r s f (f ather-f (y))) t Elephant (y)

where f ather-of (x) is a function that refers to the individual who is the father
of x . Note that although B can be proven from A, there is no substitution 8 that
allows B to be &subsumed by A.

As shown by these examples, our earlier notion of more-genera l~han is a
special case of 8-subsumption, which is itself a special case of entailment. There-
fore, searching the hypothesis space by generalizing or specializing hypotheses
is more limited than searching by using general inverse entailment operators.
Unfortunately, in its most general form, inverse entailment produces intractable
searches. However, the intermediate notion of 8-subsumption provides one conve-
nient notion that lies midway between our earlier definition of more-genera l~han
and entailment.

Although inverse resolution is an intriguing method for generating candidate hy-
potheses, in practice it can easily lead to a combinatorial explosion of candidate
hypotheses. An alternative approach is to use inverse entailment to generate just
the single most specific hypothesis that, together with the background informa-
tion, entails the observed data. This most specific hypothesis can then be used
to bound a general-to-specific search through the hypothesis space similar to that
used by FOIL, but with the additional constraint that the only hypotheses consid-
ered are hypotheses more general than this bound. This approach is employed by
the PROGOL system, whose algorithm can be summarized as follows:

1. The user specifies a restricted language of first-order expressions to be used
as the hypothesis space H. Restrictions are stated using "mode declarations,"

which enable the user to specify the predicate and function symbols to be
considered, and the types and formats of arguments for each.

2. PROGOL uses a sequential covering algorithm to learn a set of expressions
from H that cover the data. For each example (xi, f (xi)) that is not yet
covered by these learned expressions, it first searches for the most specific
hypothesis hi within H such that (B A hi A xi) l- f (x i) . More precisely, it
approximates this by calculating the most specific hypothesis among those
that entail f (xi) within k applications of the resolution rule (where k is a
user-specified parameter).

3. PROGOL then performs a general-to-specific search of the hypothesis space
bounded by the most general possible hypothesis and by the specific bound
hi calculated in step 2. Within this set of hypotheses, it seeks the hypothesis
having minimum description length (measured by the number of literals).
This part of the search is guided by an A*-like heuristic that allows pruning
without running the risk of pruning away the shortest hypothesis.

The details of the PROGOL algorithm are described by Muggleton (1992,
1995).

10.8 SUMMARY AND FURTHER READING
The main points of this chapter include:

The sequential covering algorithm learns a disjunctive set of rules by first
learning a single accurate rule, then removing the positive examples covered
by this rule and iterating the process over the remaining training examples.
It provides an efficient, greedy algorithm for learning rule sets, and an al-
ternative to top-down decision tree learning algorithms such as ID3, which
can be viewed as simultaneous, rather than sequential covering algorithms.

0 In the context of sequential covering algorithms, a variety of methods have
been explored for learning a single rule. These methods vary in the search
strategy they use for examining the space of possible rule preconditions. One
popular approach, exemplified by the CN2 program, is to conduct a general-
to-specific beam search, generating and testing progressively more specific
rules until a sufficiently accurate rule is found. Alternative approaches search
from specific to general hypotheses, use an example-driven search rather than
generate and test, and employ different statistical measures of rule accuracy
to guide the search.
Sets of first-order rules (i.e., rules containing variables) provide a highly
expressive representation. For example, the programming language PROLOG
represents general programs using collections of first-order Horn clauses.
The problem of learning first-order Horn clauses is therefore often referred
to as the problem of inductive logic programming.
One approach to learning sets of first-order rules is to extend the sequential
covering algorithm of CN2 from propositional to first-order representations.

This approach is exemplified by the FOIL program, which can learn sets of
first-order rules, including simple recursive rule sets.

0 A second approach to learning first-order rules is based on the observation
that induction is the inverse of deduction. In other words, the problem of
induction is to find a hypothesis h that satisfies the constraint

where B is general background information, X I . . . x, are descriptions of the
instances in the training data D, and f (XI). . . f (x,) are the target values of
the training instances.

0 Following the view of induction as the inverse of deduction, some programs
search for hypotheses by using operators that invert the well-known opera-
tors for deductive reasoning. For example, CIGOL uses inverse resolution, an
operation that is the inverse of the deductive resolution operator commonly
used for mechanical theorem proving. PROGOL combines an inverse entail-
ment strategy with a general-to-specific strategy for searching the hypothesis
space.

Early work on learning relational descriptions includes Winston's (1970)
well-known program for learning network-style descriptions for concepts such
as "arch." Banerji7s (1964, 1969) work and Michalski7s series of AQ programs
(e.g., Michalski 1969; Michalski et al. 1986) were among the earliest to ex-
plore the use of logical representations in learning. Plotkin's (1970) definition of
8-subsumption provided an early formalization of the relationship between induc-
tion and deduction. Vere (1975) also explored learning logical representations,
and Buchanan's (1976) META-DENDRAL program learned relational descriptions
representing molecular substructures likely to fragment in a mass spectrometer.
This program succeeded in discovering useful rules that were subsequently pub-
lished in the chemistry literature. Mitchell's (1979) CANDIDATE-ELIMINATION ver-
sion space algorithm was applied to these same relational descriptions of chemical
structures.

With the popularity of the PROLOG language in the mid-1980~~ researchers
began to look more carefully at learning relational descriptions represented by
Horn clauses. Early work on learning Horn clauses includes Shapiro's (1983)
MIS and Sammut and Banerji's (1986) MARVIN. Quinlan7s (1990) FOIL algo-
rithm, discussed here, was quickly followed by a number of algorithms employ-
ing a general-to-specific search for first-order rules including MFOIL (Dieroski
1991), FOCL (Pazzani et al. 1991), CLAUDIEN (De Raedt and Bruynooghe
1993), and MARKUS (Grobelnik 1992). The FOCL algorithm is described in
Chapter 12.

An alternative line of research on learning Horn clauses by inverse entail-
ment was spurred by Muggleton and Buntine (1988), who built on related ideas
by Sammut and Banerji (1986) and Muggleton (1987). More recent work along
this line has focused on alternative search strategies and methods for constraining
the hypothesis space to make learning more tractable. For example, Kietz and

Wrobel (1992) use rule schemata in their RDT program to restrict the form of
expressions that may be considered, during learning, and Muggleton and Feng
(1992) discuss the restriction of first-order expressions to ij-determinate literals.
Cohen (1994) discusses the GRENDEL program, which accepts as input an ex-
plicit description of the language for describing the clause body, thereby allowing
the user to explicitly constrain the hypothesis space.

LavraC and DZeroski (1994) provide a very readable textbook on inductive
logic programming. Other useful recent monographs and edited collections include
(Bergadano and Gunetti 1995; Morik et al. 1993; Muggleton 1992, 1995b). The
overview chapter by Wrobel(1996) also provides a good perspective on the field.
Bratko and Muggleton (1995) summarize a number of recent applications of ILP
to problems of practical importance. A series of annual workshops on ILP provides
a good source of recent research papers (e.g., see De Raedt 1996).

EXERCISES
10.1. Consider a sequential covering algorithm such as CN2 and a simultaneous covering

algorithm such as ID3. Both algorithms are to be used to learn a target concept
defined over instances represented by conjunctions of n boolean attributes. If ID3
learns a balanced decision tree of depth d, it will contain 2d - 1 distinct decision
nodes, and therefore will have made 2d - 1 distinct choices while constructing its
output hypothesis. How many rules will be formed if this tree is re-expressed as

t a disjunctive set of rules? How many preconditions will each ru?e possess? How
many distinct choices would a sequential covering algorithm have to make to learn
this same set of rules? Which system do you suspect would be more prone to
overfitting if both were given the same training data?

10.2. Refine the LEARN-ONE-RULE algorithm of Table 10.2 so that it can learn rules whose
preconditions include thresholds on real-valued attributes (e.g., temperature >
42). Specify your new algorithm as a set of editing changes to the algorithm of
Table 10.2. Hint: Consider how this is accomplished for decision tree learning.

10.3. Refine the LEARN-ONE-RULE algorithm of Table 10.2 so that it can learn rules whose
preconditions include constraints such as nationality E {Canadian, Brazilian},
where a discrete-valued attribute is allowed to take on any value in some specified
set. Your modified program should explore the hypothesis space containing all such
subsets. Specify your new algorithm as a set of editing changes to the algorithm
of Table 10.2.

10.4. Consider the options for implementing LEARN-ONE-RULE in terms of the possible
strategies for searching the hypothesis space. In particular, consider the following
attributes of the search
(a) generate-and-test versus data-driven
(b) general-to-specific versus specific-to-general
(c) sequential cover versus simultaneous cover

Discuss the benefits of the choice made by the algorithm in Tables 10.1 and
10.2. For each of these three attributes of the search strategy, discuss the (positive
and negative) impact of choosing the alternative option.

10.5. Apply inverse resolution in propositional form to the clauses C = A v B, C1 =
A v B v G. Give at least two possible results for CZ.

10.6. Apply inverse resolution to the clauses C = R(B, x) v P (x , A) and CI = S(B, y) v
R (z , x) . Give at least four possible results for C2. Here A and B are constants, x
and y are variables.

10.7. Consider the bottom-most inverse resolution step in Figure 10.3. Derive at least
two different outcomes that could result given different choices for the substi-
tutions el and 02. Derive a result for the inverse resolution step if the clause
Father(Tom, Bob) is used in place of Father(Shannon, T o m) .

10.8. Consider the relationship between the definition of the induction problem in this
chapter

and our earlier definition of inductive bias from Chapter 2, Equation 2.1. There we
defined the inductive bias, Bbias, by the expression

where L(xi , D) is the classification that the learner assigns to the new instance xi
after learning from the training data D, and where X is the entire instance space.
Note the first expression is intended to describe the hypothesis we wish the learner
to output, whereas the second expression is intended to describe the learner's policy
for generalizing beyond the training data. Invent a learner for which the inductive
bias Bbias of the learner is identical to the background knowledge B that it is
provided.

REFERENCES
Banerji, R. (1964). A language for the description of concepts. General Systems, 9, 135-141.
Bane rji, R. (1969). Theory of problem solving-an approach to artijicial intelligence. New York:

American Elsevier Publishing Company.
Bergadano, F., & Gunetti, D. (1995). Inductive logic programming: From machine learning to soft-

ware engineering. Cambridge, Ma: MIT Press.
Bratko, I., & Muggleton, S. (1995). Applications of inductive logic programming. Communications

of the ACM, 38(1 I), 65-70.
Buchanan, B. G., Smith, D. H., White, W. C., Gritter, R., Feigenbaum, E. A., Lederberg, J., &

Djerassi, C. (1976). Applications of artificial intelligence for chemical inference, XXII: Auto-
matic rule formation in mass spectrometry by means of the meta-DENDRAL program. Journal
of the American Chemical Society, 98, 6168.

Buntine, W . (1986). Generalised subsumption. Proceedings of the European Conference on Artijicial
Intelligence, London.

Buntine, W. (1988). Generalized subsumption and its applications to induction and redundancy.
Artificial Intelligence, 36, 149-176.

Cameron-Jones, R., & Quinlan, J. R. (1993). Avoiding pitfalls when learning recursive theories.
Proceedings of the Eighth International Workshop on Machine Learning (pp 389-393). San
Matw, CA: Morgan Kaufmann.

Cestnik, B., & Bratko, I. (1991). On estimating probabilities in tree pruning. Proceedings of the
European Working Session on Machine Learning @p. 138-150). Porto, Portugal.

Clark, P., & Niblett, R. (1989). The CN2 induction algorithm. Machine Learning, 3, 261-284.
Cohen, W . (1994). Grammatically biased learning: Learning logic programs using an explicit an-

tecedent description language. ArtGcial Intelligence, 68(2), 303-366.
De Raedt, L. (1992). Interactive theory revision: An inductive logic programming approach. London:

Academic Press.

De Raedt, L., & Bruynooghe, M. (1993). A theory of clausal discovery. Proceedings of the Thirteenth
International Joint Conference on ArtGcial Intelligence. San Mateo, CA: Morgan Kaufmann.

De Raedt, L. (Ed.). (1996). Advancm in inductive logic programming: Proceedings of the Fifh In-
ternational Workshop on Inductive Logic Programming. Amsterdam: IOS Press.

Dolsak, B., & Muggleton, S. (1992). The application of inductive logic programming to finite element
mesh design. In S. Muggleton (Ed.), Inductive Logic Programming. London: Academic Press.

DZeroski, S. (1991). Handling noise in inductive logic programming (Master's thesis). Electrical
Engineering and Computer Science, University of Ljubljana, Ljubljana, Slovenia.

Flener, P. (1994). Logic program synthesis from incomplete information. The Kluwer international
series in engineering and computer science. Boston: Kluwer Academic Publishers.

Grobelnik, M. (1992). MARKUS: An optimized model inference system. Proceedings of the Work-
shop on Logical Approaches to Machine Learning, Tenth European Conference on AI, Vienna,
Austria.

Jevons, W. S. (1874). The principles of science: A treatise on logic and scientijc method. London:
Macmillan.

Kietz, J-U., & Wrobel, S. (1992). Controlling the complexity of learning in logic through syntactic and
task-oriented models. In S. Muggleton (Ed.), Inductive logic programming. London: Academic
Press.

LavraE, N., & Dieroski, S. (1994). Inductive logicprogramming: Techniques and applications. Ellis
Horwood.

Lindsay, R. K., Buchanan, B. G., Feigenbaurn, E. A., & Lederberg, J. (1980). Applications of art@cial
intelligence for organic chemistry. New York: McGraw-Hill.

Michalski, R. S., (1969). On the quasi-minimal solution of the general covering problem. Proceed-
ings of the First International Symposium on Information Processing (pp. 125-128). Bled,
Yugoslavia.

Michalski, R. S., Mozetic, I., Hong, J., and Lavrac, H. (1986). The multi-purpose incremental learning
system AQ15 and its testing application to three medical domains. Proceedings of the Fifh
National Conference on A1 (pp. 1041-1045). Philadelphia: Morgan-Kaufmann.

Mitchell, T. M. (1979). Version spaces: An approach to concept learning (Ph.D. dissertation). Elec-
trical Engineering Dept., Stanford University, Stanford, CA.

Morik, K., Wrobel, S., Kietz, J.-U., & Emde, W. (1993). Knowledge acquisition and machine learning:
Theory, methods, and applications. London: Academic Press.

Muggleton, S. (1987). DUCE: An oracle based approach to constructive induction. Proceedings of the
International Joint Conference on AI @p. 287-292). San Mateo, CA: Morgan Kaufmann.

Muggleton, S. (1995a). Inverse entailment and PROGOL. New Generation Computing, 13, 245-286.
Muggleton, S. (1995b). Foundations of inductive logic programming. Englewood Cliffs, NJ: Prentice

Hall.
Muggleton, S., & Buntine, W. (1988). Machine invention of first-order predicates by inverting res-

olution. Proceedings of the Fzfth International Machine Learning Conference (pp. 339-352).
Ann Arbor, Michigan: Morgan Kaufmann.

Muggleton, S., & Feng, C. (1990). Efficient induction of logic programs. Proceedings of the First
Conference on Algorithmic Learning Theory. Ohrnsha, Tokyo.

Muggleton, S., & Feng, C. (1992). Efficient induction of logic programs. In Muggleton (Ed.), Induc-
tive logic programming. London: Academic Press.

Muggleton, S. (Ed.). (1992). Inductive logic programming. London: Academic Press.
Pazzani, M., Brunk, C., & Silverstein, G. (1991). A knowledge-intensive approach to learning rela-

tional concepts. Proceedings of the Eighth International Workshop on Machine Learning (pp.
432-436). San Francisco: Morgan Kaufmann.

Plotkin, G. D. (1970). A note on inductive generalization. In B. Meltzer & D. Michie (Eds.), Machine
Intelligence 5 (pp. 153-163). Edinburgh University Press.

Plotkin, G. D. (1971). A further note on inductive generalization. In B. Meltzer & D. Michie (Eds.),
Machine Intelligence 6. New York: Elsevier.

Quinlan, J. R. (1990). Learning logical definitions from relations. Machine Learning, 5, 239-266.

Quinlan, J. R. (1991). Improved estimates for the accuracy of small disjuncts (Technical Note).
Machine Learning, 6(1), 93-98. Boston: Kluwer Academic Publishers.

Rivest R. L. (1987). Learning decision lists. Machine Learning, 2(3), 229-246.
Robinson, J. A. (1965). A machine-oriented logic based on the resolution principle. Journal of the

ACM, 12(1), 23-41.
Sammut, C. A. (1981). Concept learning by experiment. Seventh International Joint Conference on

Artijicial Intelligence, Vancouver.
Sammut, C. A., & Banerji, R. B. (1986). Learning concepts by asking questions. In R. S. Michalski,

J. G. Carbonell, & T. M. Mitchell (Eds.), Machine learning: An art$cial intelligence approach
(Vol 2, pp. 167-192). Los Altos, California: Morgan Kaufmann.

Shapiro, E. (1983). Algorithmic program debugging. Cambridge M A : MIT Press.
Srinivasan, A., Muggleton, S., & King, R. D. (1995). Comparing the use of background knowl-

edge by inductive logic programming systems (PRG Technical report PRG-TR-9-95). Oxford
University Computing Laboratory.

Srinivasan, A,, Muggleton, S., King, R. D., & Stemberg, M. J. E. (1994). Mutagenesis: ILP ex-
periments in a non-determinate biological domain. Proceedings of the Fourth Inductive Logic
Programming Workshop.

Vere, S. (1975). Induction of concepts in the predicate calculus. Proceedings of the Fourth Intem-
tional Joint Conference on Artijicial Intelligence (pp. 351-356).

Winston, P. (1970). Learning structural descriptions from examples (Ph.D. dissertation) (MIT Tech-
nical Report AI-TR-231).

Wrobel, S. (1994). Concept formation and knowledge revision. Boston: Kluwer Academic Publishers.
Wrobel, S. (1996). Inductive logic programming. In G. Brewka (Ed)., Principles of knowledge rep-

resentation. Stanford, CA: CSLI Publications.

CHAPTER

ANALYTICAL
LEARNING

Inductive learning methods such as neural network and decision tree learning require
a certain number of training examples to achieve a given level of generalization ac-
curacy, as reflected in the theoretical bounds and experimental results discussed in
earlier chapters. Analytical learning uses prior knowledge and deductive reasoning to
augment the information provided by the training examples, so that it is not subject
to these same bounds. This chapter considers an analytical learning method called
explanation-based learning (EBL). In explanation-based learning, prior knowledge
is used to analyze, or explain, how each observed training example satisfies the
target concept. This explanation is then used to distinguish the relevant features
of the training example from the irrelevant, so that examples can be generalized
based on logical rather than statistical reasoning. Explanation-based learning has
been successfully applied to learning search control rules for a variety of planning
and scheduling tasks. This chapter considers explanation-based learning when the
learner's prior knowledge is correct and complete. The next chapter considers com-
bining inductive and analytical learning in situations where prior knowledge is only
approximately correct.

11.1 INTRODUCTION
Previous chapters have considered a variety of inductive learning methods: that is,
methods that generalize from observed training examples by identifying features
that empirically distinguish positive from negative training examples. Decision
tree learning, neural network learning, inductive logic programming, and genetic

algorithms are all examples of inductive methods that operate in this fashion. The
key practical limit on these inductive learners is that they perform poorly when
insufficient data is available. In fact, as discussed in Chapter 7, theoretical analysis
shows that there are fundamental bounds on the accuracy that can be achieved
when learning inductively from a given number of training examples.

Can we develop learning methods that are not subject to these fundamental
bounds on learning accuracy imposed by the amount of training data available?
Yes, if we are willing to reconsider the formulation of the learning problem itself.
One way is to develop learning algorithms that accept explicit prior knowledge as
an input, in addition to the input training data. Explanation-based learning is one
such approach. It uses prior knowledge to analyze, or explain, each training exam-
ple in order to infer which example features are relevant to the target function and
which are irrelevant. These explanations enable it to generalize more accurately
than inductive systems that rely on the data alone. As we saw in the previous chap-
ter, inductive logic programming systems such as CIGOL also use prior background
knowledge to guide learning. However, they use their background knowledge to
infer features that augment the input descriptions of instances, thereby increasing
the complexity of the hypothesis space to be searched. In contrast, explanation-
based learning uses prior knowledge to reduce the complexity of the hypothesis
space to be searched, thereby reducing sample complexity and improving gener-
alization accuracy of the learner.

To capture the intuition underlying explanation-based learning, consider the
task of learning to play chess. In particular, suppose we would like our chess
program to learn to recognize important classes of game positions, such as the
target concept "chessboard positions in which black will lose its queen within
two moves." Figure 11.1 shows a positive training example of this target concept.
Inductive learning methods could, of course, be employed to learn this target
concept. However, because the chessboard is fairly complex (there are 32 pieces
that may be on any of 64 squares), and because the particular patterns that capture
this concept are fairly subtle (involving the relative positions of various pieces on
the board), we would have to provide thousands of training examples similar to
the one in Figure 1 1.1 to expect an inductively learned hypothesis to generalize
correctly to new situations.

FIGURE 11.1
A positive example of the target concept "chess positions in
which black will lose its queen within two moves." Note the
white knight is simultaneously attacking both the black king and
queen. Black must therefore move its king, enabling white to
capture its queen.

What is interesting about this chess-learning task is that humans appear to
learn such target concepts from just a handful of training examples! In fact, after
considering only the single example shown in Figure 1 1.1, most people would
be willing to suggest a general hypothesis for the target concept, such as "board
positions in which the black king and queen are simultaneously attacked," and
would not even consider the (equally consistent) hypothesis "board positions in
which four white pawns are still in their original locations." How is it that humans
can generalize so successfully from just this one example?

The answer appears to be that people rely heavily on explaining, or analyz-
ing, the training example in terms of their prior knowledge about the legal moves
of chess. If asked to explain why the training example of Figure 11.1 is a positive
example of "positions in which the queen will be lost in two moves," most people
would give an explanation similar to the following: "Because white's knight is
attacking both the king and queen, black must move out of check, thereby al-
lowing the knight to capture the queen." The importance of such explanations is
that they provide the information needed to rationally generalize from the details
of the training example to a correct general hypothesis. Features of the training
example that are mentioned by the explanation (e.g., the position of the white
knight, black king, and black queen) are relevant to the target concept and should
be included in the general hypothesis. In contrast, features of the example that are
not mentioned by the explanation (e.g., the fact that there are six black pawns on
the board) can be assumed to be irrelevant details.

What exactly is the prior knowledge needed by a learner to construct the
explanation in this chess example? It is simply knowledge about the legal rules of
chess: knowledge of which moves are legal for the knight and other pieces, the fact
that players must alternate moves in the game, and the fact that to win the game one
player must capture his opponent's king. Note that given just this prior knowledge
it is possible in principle to calculate the optimal chess move for any board
position. However, in practice this calculation can be frustratingly complex and
despite the fact that we humans ourselves possess this complete, perfect knowledge
of chess, we remain unable to play the game optimally. As a result, much of human
learning in chess (and in other search-intensive problems such as scheduling and
planning) involves a long process of uncovering the consequences of our prior
knowledge, guided by specific training examples encountered as we play the game.

This chapter describes learning algorithms that automatically construct and
learn from such explanations. In the remainder of this section we define more
precisely the analytical learning problem. The next section presents a particular
explanation-based learning algorithm called PROLOG-EBG. Subsequent sections
then examine the general properties of this algorithm and its relationship to in-
ductive learning algorithms discussed in other chapters. The final section describes
the application of explanation-based learning to improving performance at large
state-space search problems. In this chapter we consider the special case in which
explanations are generated from prior knowledge that is perfectly correct, as it is
for us humans in the above chess example. In Chapter 12 we consider the more
general case of learning when prior knowledge is only approximately correct.

11.1.1 Inductive and Analytical Learning Problems
The essential difference between analytical and inductive learning methods is that
they assume two different formulations of the learning problem:

0 In inductive learning, the learner is given a hypothesis space H from which
it must select an output hypothesis, and a set of training examples D =
{ (x l , f (x ~)) , . . . (x, , f (x ,)) } where f (x i) is the target value for the instance
xi. The desired output of the learner is a hypothesis h from H that is con-
sistent with these training examples.

0 In analytical learning, the input to the learner includes the same hypothesis
space H and training examples D as for inductive learning. In addition,
the learner is provided an additional input: A domain theory B consisting
of background knowledge that can be used to explain observed training
examples. The desired output of ,the learner is a hypothesis h from H that
is consistent with both the training examples D and the domain theory B.

To illustrate, in our chess example each instance xi would describe a particular
chess position, and f (x i) would be True when xi is a position for which black
will lose its queen within two moves, and False otherwise. We might define
the hypothesis space H to consist of sets of Horn clauses (if-then rules) as in
Chapter 10, where the predicates used by the rules refer to the positions or relative
positions of specific pieces on the board. The domain theory B would consist of a
formalization of the rules of chess, describing the legal moves, the fact that players
must take turns, and the fact that the game is won when one player captures her
opponent's king.

Note in analytical learning, the learner must output a hypothesis that is con-
sistent with both the training data and the domain theory. We say that hypothesis
h is consistent with domain theory B provided B does not entail the negation of
h (i.e., B -h). This additional constraint that the output hypothesis must be
consistent with B reduces the ambiguity faced by the learner when the data alone
cannot resolve among all hypotheses in H. The net effect, provided the domain
theory is correct, is to increase the accuracy of the output hypothesis.

Let us introduce in detail a second example of an analytical learning prob-
lem--one that we will use for illustration throughout this chapter. Consider an
instance space X in which each instance is a pair of physical objects. Each of the
two physical objects in the instance is described by the predicates Color, Volume,
Owner, Material, Type, and Density, and the relationship between the two objects
is described by the predicate On. Given this instance space, the task is to learn the
target concept "pairs of physical objects, such that one can be stacked safely on
the other," denoted by the predicate SafeToStack(x,y). Learning this target concept
might be useful, for example, to a robot system that has the task of storing various
physical objects within a limited workspace. The full definition of this analytical
learning task is given in Table 1 1.1.

Given:
rn Instance space X: Each instance describes a pair of objects represented by the predicates Type,

Color, Volume, Owner, Material, Density, and On.
rn Hypothesis space H: Each hypothesis is a set of Horn clause rules. The head of each Horn

clause is a literal containing the target predicate SafeToStack. The body of each Horn clause
is a conjunction of literals based on the same predicates used to describe the instances, as
well as the predicates LessThan, Equal, GreaterThan, and the functions plus, minus, and
times. For example, the following Horn clause is in the hypothesis space:

Sa f eToStack(x, y) t Volume(x, vx) r\ Volurne(y, v y) A LessThan(vx, vy)

rn Target concept: SafeToStack(x,y)
rn Training Examples: A typical positive example, SafeToStack(Obj1, ObjZ) , is shown below:

O n (O b j l . O b j 2) Owner(0bj I , Fred)
Type(0bj I , Box) Owner(Obj2 , Louise)
T y p e (O b j 2 , Endtable) Density(0bj 1 ,0.3)
Color(Obj1, Red) Material(Obj1, Cardboard)
Color(Obj2, Blue) Material (O b j 2 , Wood)
Volume(Obj l ,2)
Domain Theory B:
SafeToStack(x, y) c -Fragile(y)
SafeToStack(x, y) c Lighter(x, y)
Lighter@, y) c Weight(x, w x) A Weight(y, wy) r\ LessThan(wx, w y)
Weight(x, w) c Volume(x, v) A Density(x,d) A Equal(w, times(v, d))
Weight(x, 5) c Type(x, Endtable)
Fragile(x) c Material (x , Glass)

Determine:
rn A hypothesis from H consistent with the training examples and domain theory.

TABLE 11.1
An analytical learning problem: SafeToStack(x,y).

As shown in Table 11.1, we have chosen a hypothesis space H in which
each hypothesis is a set of first-order if-then rules, or Horn clauses (throughout
this chapter we follow the notation and terminology for first-order Horn clauses
summarized in Table 10.3). For instance, the example Horn clause hypothesis
shown in the table asserts that it is SafeToStack any object x on any object y, if
the Volume of x is LessThan the Volume of y (in this Horn clause the variables
v x and vy represent the volumes of x and y, respectively). Note the Horn clause
hypothesis can refer to any of the predicates used to describe the instances, as well
as several additional predicates and functions. A typical positive training example,
SafeToStack(Obj1, Obj2) , is also shown in the table.

To formulate this task as an analytical learning problem we must also provide
a domain theory sufficient to explain why observed positive examples satisfy the
target concept. In our earlier chess example, the domain theory corresponded to
knowledge of the legal moves in chess, from which we constructed explanations

describing why black would lose its queen. In the current example, the domain
theory must similarly explain why certain pairs of objects can be safely stacked
on one another. The domain theory shown in the table includes assertions such
as "it is safe to stack x on y if y is not Fragile," and "an object x is Fragile if
the Material from which x is made is Glass." Like the learned hypothesis, the
domain theory is described by a collection of Horn clauses, enabling the system in
principle to incorporate any learned hypotheses into subsequent domain theories.
Notice that the domain theory refers to additional predicates such as Lighter and
Fragile, which are not present in the descriptions of the training examples, but
which can be inferred from more primitive instance attributes such as Material,
Density, and Volume, using other other rules in the domain theory. Finally, notice
that the domain theory shown in the table is sufficient to prove that the positive
example shown there satisfies the target concept SafeToStack.

11.2 LEARNING WITH PERFECT DOMAIN THEORIES:
PROLOG-EBG
As stated earlier, in this chapter we consider explanation-based learning from
domain theories that are perfect, that is, domain theories that are correct and
complete. A domain theory is said to be correct if each of its assertions is a
truthful statement about the world. A domain theory is said to be complete with
respect to a given target concept and instance space, if the domain theory covers
every positive example in the instance space. Put another way, it is complete if
every instance that satisfies the target concept can be proven by the domain theory
to satisfy it. Notice our definition of completeness does not require that the domain
theory be able to prove that negative examples do not satisfy the target concept.
However, if we follow the usual PROLOG convention that unprovable assertions are
assumed to be false, then this definition of completeness includes full coverage
of both positive and negative examples by the domain theory.

The reader may well ask at this point whether it is reasonable to assume that
such perfect domain theories are available to the learner. After all, if the learner
had a perfect domain theory, why would it need to learn? There are two responses
to this question.

First, there are cases in which it is feasible to provide a perfect domain
theory. Our earlier chess problem provides one such case, in which the legal
moves of chess form a perfect domain theory from which the optimal chess
playing strategy can (in principle) be inferred. Furthermore, although it is
quite easy to write down the legal moves of chess that constitute this domain
theory, it is extremely difficult to write down the optimal chess-playing
strategy. In such cases, we prefer to provide the domain theory to the learner
and rely on the learner to formulate a useful description of the target concept
(e.g., "board states in which I am about to lose my queen") by examining
and generalizing from specific training examples. Section 11.4 describes the
successful application of explanation-based learning with perfect domain

theories to automatically improve performance at several search-intensive
planning and optimization problems.

0 Second, in many other cases it is unreasonable to assume that a perfect
domain theory is available. It is difficult to write a perfectly correct and
complete theory even for our relatively simple SafeToStack problem. A more
realistic assumption is that plausible explanations based on imperfect domain
theories must be used, rather than exact proofs based on perfect knowledge.
Nevertheless, we can begin to understand the role of explanations in learning
by considering the ideal case of perfect domain theories. In Chapter 12 we
will consider learning from imperfect domain theories.

This section presents an algorithm called PROLOG-EBG (Kedar-Cabelli and
McCarty 1987) that is representative of several explanation-based learning algo-
rithms. PROLOG-EBG is a sequential covering algorithm (see Chapter 10). In other
words, it operates by learning a single Horn clause rule, removing the positive
training examples covered by this rule, then iterating this process on the remain-
ing positive examples until no further positive examples remain uncovered. When
given a complete and correct domain theory, PROLOG-EBG is guaranteed to output
a hypothesis (set of rules) that is itself correct and that covers the observed pos-
itive training examples. For any set of training examples, the hypothesis output
by PROLOG-EBG constitutes a set of logically sufficient conditions for the target
concept, according to the domain theory. PROLOG-EBG is a refinement of the EBG
algorithm introduced by Mitchell et al. (1986) and is similar to the EGGS algo-
rithm described by DeJong and Mooney (1986). The PROLOG-EBG algorithm is
summarized in Table 1 1.2.

11.2.1 An Illustrative Trace
To illustrate, consider again the training example and domain theory shown in
Table 1 1.1. As summarized in Table 1 1.2, the PROLOG-EBG algorithm is a se-
quential covering algorithm that considers the training data incrementally. For
each new positive training example that is not yet covered by a learned Horn
clause, it forms a new Horn clause by: (1) explaining the new positive training
example, (2) analyzing this explanation to determine an appropriate generaliza-
tion, and (3) refining the current hypothesis by adding a new Horn clause rule to
cover this positive example, as well as other similar instances. Below we examine
each of these three steps in turn.

11.2.1.1 EXPLAIN THE TRAINING EXAMPLE

The first step in processing each novel training example is to construct an expla-
nation in terms of the domain theory, showing how this positive example satisfies
the target concept. When the domain theory is correct and complete this expla-
nation constitutes a proof that the training example satisfies the target concept.
When dealing with imperfect prior knowledge, the notion of explanation must be
extended to allow for plausible, approximate arguments rather than perfect proofs.

PROWG-EBG(TargetConcept, TrainingExamples, DomainTheory)
0 LearnedRules c (1
0 Pos c the positive examples from TrainingExamples
0 for each PositiveExample in Pos that is not covered by LearnedRules, do

I . Explain:
Explanation c an explanation (proof) in terms of the DomainTheory that PositiveEx-
ample satisfies the TargetConcept

2. Analyze:
SufJicientConditions t the most general set of features of PositiveExample sufficient
to satisfy the TargetConcept according to the Explanation.

3. Rejine:
0 LearnedRules c LearnedRules + NewHornClause, where NewHornCIause is of

the form
TargetConcept c SufJicientConditions

0 Return LearnedRules

TABLE 11.2
The explanation-based learning algorithm PROLOG-EBG. For each positive example that is not yet
covered by the set of learned Horn clauses (LearnedRules), a new Horn clause is created. This
new Horn clause is created by (1) explaining the training example in terms of the domain theory,
(2) analyzing this explanation to determine the relevant features of the example, then (3) constructing
a new Horn clause that concludes the target concept when this set of features is satisfied.

The explanation for the current training example is shown in Figure 11.2.
Note the bottom of this figure depicts in graphical form the positive training
example SafeToStack (O b j l , 0 b j 2) from Table 1 1.1. The top of the figure depicts
the explanation constructed for this training example. Notice the explanation, or
proof, states that it is SafeToStack O b j l on 0 b j 2 because O b j l is Lighter than
O b j 2 . Furthermore, O b j l is known to be Lighter, because its Weight can be
inferred from its Density and Volume, and because the Weight of 0 b j 2 can be
inferred from the default weight of an Endtable. The specific Horn clauses that
underlie this explanation are shown in the domain theory of Table 1 1.1. Notice that
the explanation mentions only a small fraction of the known attributes of O b j l
and 0 b j 2 (i.e., those attributes corresponding to the shaded region in the figure).

While only a single explanation is possible for the training example and
domain theory shown here, in general there may be multiple possible explanations.
In such cases, any or all of the explanations may be used. While each may give
rise to a somewhat different generalization of the training example, all will be
justified by the given domain theory. In the case of PROLOG-EBG, the explanation
is generated using a backward chaining search as performed by PROLOG. PROLOG-
EBG, like PROLOG, halts once it finds the first valid proof.

11.2.1.2 ANALYZE THE EXPLANATION

The key question faced in generalizing the training example is "of the many fea-
tures that happen to be true of the current training example, which ones are gen-

Explanation:

Training Example:

FIGURE 11.2
Explanation of a training example. The network at the bottom depicts graphically the training ex-
ample SafeToStack(Obj1, Obj2) described in Table 11.1. The top portion of the figure depicts the
explanation of how this example satisfies the target concept, SafeToStack. The shaded region of
the training example indicates the example attributes used in the explanation. The other, irrelevant,
example attributes will be dropped from the generalized hypothesis formed from this analysis.

erally relevant to the target concept?' The explanation constructed by the learner
provides a direct answer to this question: precisely those features mentioned in the
explanation. For example, the explanation of Figure 11.2 refers to the Density of
O b j l , but not to its Owner. Therefore, the hypothesis for SafeToStack(x,y) should
include Density(x, 0.3), but not Owner(x, Fred). By collecting just the features
mentioned in the leaf nodes of the explanation in Figure 11.2 and substituting
variables x and y for O b j l and O b j 2 , we can form a general rule that is justified
by the domain theory:

SafeToStack(x, y) t Volume(x, 2) A Density(x, 0 .3) A Type(y , Endtable)

The body of the above rule includes each leaf node in the proof tree, except for
the leaf nodes "Equal(0.6, times(2,0.3)" and "LessThan(0.6,5)." We omit these
two because they are by definition always satisfied, independent of x and y.

Along with this learned rule, the program can also provide its justification:
The explanation of the training example forms a proof for the correctness of this
rule. Although this explanation was formed to cover the observed training exam-
ple, the same explanation will apply to any instance that matches this general rule.

The above rule constitutes a significant generalization of the training ex-
ample, because it omits many properties of the example (e.g., the Color of the
two objects) that are irrelevant to the target concept. However, an even more
general rule can be obtained by more careful analysis of the explanation. PROLOG-
EBG computes the most general rule that can be justified by the explanation, by
computing the weakest preimage of the explanation, defined as follows:

Definition: The weakest preimage of a conclusion C with respect to a proof P is
the most general set of initial assertions A, such that A entails C according to P.

For example, the weakest preimage of the target concept SafeToStack(x,y),
with respect to the explanation from Table 11.1, is given by the body of the
following rule. This is the most general rule that can be justified by the explanation
of Figure 1 1.2:

SafeToStack(x, y) t Volume(x, vx) A Density(x, d x) ~
Equal(wx, times(vx, dx)) A LessThan(wx, 5) ~
Type(y, Endtable)

Notice this more general rule does not require the specific values for Volume
and Density that were required by the first rule. Instead, it states a more general
constraint on the values of these attributes.

PROLOG-EBG computes the weakest preimage of the target concept with re-
spect to the explanation, using a general procedure called regression (Waldinger
1977). The regression procedure operates on a domain theory represented by an
arbitrary set of Horn clauses. It works iteratively backward through the explana-
tion, first computing the weakest preimage of the target concept with respect to
the final proof step in the explanation, then computing the weakest preimage of
the resulting expressions with respect to the preceding step, and so on. The pro-
cedure terminates when it has iterated over all steps :in the explanation, yielding
the weakest precondition of the target concept with respect to the literals at the
leaf nodes of the explanation.

A trace of this regression process is illustrated in Figure 11.3. In this fig-
ure, the explanation from Figure 11.2 is redrawn in standard (nonitalic) font. The
frontier of regressed expressions created at each step by the regression proce-
dure is shown underlined in italics. The process begins at the root of the tree,
with the frontier initialized to the general target concept SafeToStack(x,y). The
first step is to compute the weakest preimage of this frontier expression with
respect to the final (top-most) inference rule in the explanation. The rule in
this case is SafeToStack(x, y) t Lighter(x, y), so the resulting weakest preim-
age is Lighter@, y). The process now continues by regressing the new frontier,
{Lighter(x, y)], through the next Horn clause in the explanation, resulting in the
regressed expressions (Weight(x, wx), LessThan(wx, wy), Weight(y, wy)}. This
indicates that the explanation will hold for any x and y such that the weight wx
of x is less than the weight wy of y. The regression of this frontier back to
the leaf nodes of the explanation continues in this step-by-step fashion, finally

FIGURE 11.3
Computing the weakest preimage of SafeToStack(0 bj 1, Obj2) with respect to the explanation. The
target concept is regressed from the root (conclusion) of the explanation, down to the leaves. At each
step (indicated by the dashed lines) the current frontier set of literals (underlined in italics) is regressed
backward over one rule in the explanation. When this process is completed, the conjunction of
resulting literals constitutes the weakest preimage of the target concept with respect to the explanation.
This weakest preimage is shown by the italicized literals at the bottom of the figure.

resulting in a set of generalized literals for the leaf nodes of the tree. This final
set of literals, shown at the bottom of Figure 11.3, forms the body of the final
rule.

The heart of the regression procedure is the algorithm that at each step re-
gresses the current frontier of expressions through a single Horn clause from the
domain theory. This algorithm is described and illustrated in Table 11.3. The illus-
trated example in this table corresponds to the bottommost single regression step
of Figure 11.3. As shown in the table, the REGRESS algorithm operates by finding
a substitution that unifies the head of the Horn clause rule with the corresponding
literal in the frontier, replacing this expression in the frontier by the rule body,
then applying a unifying substitution to the entire frontier.

The final Horn clause rule output by PROLOG-EBG is formulated as follows:
The clause body is defined to be the weakest preconditions calculated by the above
procedure. The clause head is the target concept itself, with each substitution from
each regression step (i.e., the substitution Oh[in Table 11.3) applied to it. This
substitution is necessary in order to keep consistent variable names between the
head and body of the created clause, and to specialize the clause head when the

R ~ ~ ~ ~ s s (F r o n t i e r , Rule, Literal, &i)
Frontier: Set of literals to be regressed through Rule
Rule: A Horn clause
Literal: A literal in Frontier that is inferred by Rule in the explanation
Oki: The substitution that unijies the head of Rule to the corresponding literal in the explanation
Returns the set of literals forming the weakest preimage of Frontier with respect to Rule

head t head of Rule
body t body of Rule
Bkl t the most general unifier of head with Literal such that there exists a substitution Bli
for which

Ori (Bkl (head)) = Bhi (head)
Return Okl (Frontier - head + body)

Example (the bottommost regression step in Figure 11.3):
h ? ~ ~ ~ s s (F r o n t i e r , Rule, Literd, @hi) where

Frontier = {Volume(x, us), Density(x, dx), Equal(wx, times(vx,dx)), LessThan(wx, wy),
Weight(y, wy))
Rule = Weight(z, 5) c Type(z, Endtable)
Literal = Weight(y, wy)
6ki = {z/Obj21

head c Weight (z , 5)
body c Type(z, Endtable)
Bhl e {z /y , wy/5], where Bri = (y lObj2)
Return {Volume(x, us), Density(x, dx) , Equal (wx, times(vx, dx)), LessThan(wx, 5).
Type(y, Endtable)]

TABLE 11.3
Algorithm for regressing a set of literals through a single Horn clause. The set of literals given
by Frontier is regressed through Rule. Literal is the member of Frontier inferred by Rule in
the explanation. The substitution Bki gives the binding of variables from the head of Rule to the
corresponding literal in the explanation. The algorithm first computes a substitution Bhl that unifies
the Rule head to Literal, in a way that is consistent with the substitution Bki. It then applies this
substitution Oh[to construct the preimage of Frontier with respect to Rule. The symbols "+" and
"-" in the algorithm denote set union and set difference. The notation {z ly] denotes the substitution
of y in place of z. An example trace is given.

explanation applies to only a special case of the target concept. As noted earlier,
for the current example the final rule is

SafeToStack(x, y) t Volume(x, vx) A Density(x, d x) ~
Equal(wx, t imes(vx , d x)) A LessThan(wx, 5) ~
T y p e (y , Endtable)

11.2.1.3 REFINE THE CURRENT HYPOTHESIS

The current hypothesis at each stage consists of the set of Horn clauses learned
thus far. At each stage, the sequential covering algorithm picks a new positive

example that is not yet covered by the current Horn clauses, explains this new
example, and formulates a new rule'according to the procedure described above.
Notice only positive examples are covered in the algorithm as we have defined
it, and the learned set of Horn clause rules predicts only positive examples. A
new instance is classified as negative if the current rules fail to predict that it is
positive. This is in keeping with the standard negation-as-failure approach used
in Horn clause inference systems such as PROLOG.

11.3 REMARKS ON EXPLANATION-BASED LEARNING
As we saw in the above example, PROLOG-EBG conducts a detailed analysis of
individual training examples to determine how best to generalize from the specific
example to a general Horn clause hypothesis. The following are the key properties
of this algorithm.

0 Unlike inductive methods, PROLOG-EBG produces justified general hypothe-
ses by using prior knowledge to analyze individual examples.

0 The explanation of how the example satisfies the target concept determines
which example attributes are relevant: those mentioned by the explanation.

0 The further analysis of the explanation, regressing the target concept to de-
termine its weakest preimage with respect to the explanation, allows deriving
more general constraints on the values of the relevant features.

0 Each learned Horn clause corresponds to a sufficient condition for satisfy-
ing the target concept. The set of learned Horn clauses covers the positive
training examples encountered by the learner, as well as other instances that
share the same explanations.

0 The generality of the learned Horn clauses will depend on the formulation
of the domain theory and on the sequence in which training examples are
considered.

0 PROLOG-EBG implicitly assumes that the domain theory is correct and com-
plete. If the domain theory is incorrect or incomplete, the resulting learned
concept may also be incorrect.

There are several related perspectives on explanation-based learning that
help to understand its capabilities and limitations.

0 EBL as theory-guided generalization of examples. EBL uses its given domain
theory to generalize rationally from examples, distinguishing the relevant ex-
ample attributes from the irrelevant, thereby allowing it to avoid the bounds
on sample complexity that apply to purely inductive learning. This is the
perspective implicit in the above description of the PROLOG-EBG algorithm.

0 EBL as example-guided reformulation of theories. The PROLOG-EBG algo-
rithm can be viewed as a method for reformulating the domain theory into a
more operational form. In particular, the original domain theory is reformu-
lated by creating rules that (a) follow deductively from the domain theory,

and (b) classify the observed training examples in a single inference step.
Thus, the learned rules can be seen as a reformulation of the domain theory
into a set of special-case rules capable of classifying instances of the target
concept in a single inference step.

0 EBL as "just" restating what the learner already "knows. " In one sense, the
learner in our SafeToStack example begins with full knowledge of the Safe-
ToStack concept. That is, if its initial domain theory is sufficient to explain
any observed training examples, then it is also sufficient to predict their
classification in advance. In what sense, then, does this qualify as learning?
One answer is that in many tasks the difference between what one knows
in principle and what one can efficiently compute in practice may be great,
and in such cases this kind of "knowledge reformulation" can be an impor-
tant form of learning. In playing chess, for example, the rules of the game
constitute a perfect domain theory, sufficient in principle to play perfect
chess. Despite this fact, people still require considerable experience to learn
how to play chess well. This is precisely a situation in which a complete,
perfect domain theory is already known to the (human) learner, and further
learning is "simply" a matter of reformulating this knowledge into a form
in which it can be used more effectively to select appropriate moves. A be-
ginning course in Newtonian physics exhibits the same property-the basic
laws of physics are easily stated, but students nevertheless spend a large
part of a semester working out the consequences so they have this knowl-
edge in more operational form and need not derive every problem solution
from first principles come the final exam. PROLOG-EBG performs this type
of reformulation of knowledge-its learned rules map directly from observ-
able instance features to the classification relative to the target concept, in a
way that is consistent with the underlying domain theory. Whereas it may
require many inference steps and considerable search to classify an arbi-
trary instance using the original domain theory, the learned rules classify
the observed instances in a single inference step.

Thus, in its pure form EBL involves reformulating the domain theory to
produce general rules that classify examples in a single inference step. This kind
of knowledge reformulation is sometimes referred to as knowledge compilation,
indicating that the transformation is an efficiency improving one that does not
alter the correctness of the system's knowledge.

11.3.1 Discovering New Features
One interesting capability of PROLOG-EBG is its ability to formulate new features
that are not explicit in the description of the training examples, but that are needed
to describe the general rule underlying the training example. This capability is
illustrated by the algorithm trace and the learned rule in the previous section. In
particular, the learned rule asserts that the essential constraint on the Volume and
Density of x is that their product is less than 5. In fact, the training examples

contain no description of such a product, or of the value it should take on. Instead,
this constraint is formulated automatically by the learner.

Notice this learned "feature" is similar in kind to the types of features repre-
sented by the hidden units of neural networks; that is, this feature is one of a very
large set of potential features that can be computed from the available instance
attributes. Like the BACKPROPAGATION algorithm, PROLOG-EBG automatically for-
mulates such features in its attempt to fit the training data. However, unlike the
statistical process that derives hidden unit features in neural networks from many
training examples, PROLOG-EBG employs an analytical process to derive new fea-
tures based on analysis of single training examples. Above, PROLOG-EBG derives
the feature Volume . Density > 5 analytically from the particular instantiation
of the domain theory used to explain a single training example. For example,
the notion that the product of Volume and Density is important arises from the
domain theory rule that defines Weight. The notion that this product should be
less than 5 arises from two other domain theory rules that assert that Obj 1 should
be Lighter than the Endtable, and that the Weight of the Endtable is 5. Thus,
it is the particular composition and instantiation of these primitive terms from the
domain theory that gives rise to defining this new feature.

The issue of automatically learning useful features to augment the instance
representation is an important issue for machine learning. The analytical derivation
of new features in explanation-based learning and the inductive derivation of new
features in the hidden layer of neural networks provide two distinct approaches.
Because they rely on different sources of information (statistical regularities over
many examples versus analysis of single examples using the domain theory), it
may be useful to explore new methods that combine both sources.

11.3.2 Deductive Learning
In its pure form, PROLOG-EBG is a deductive, rather than inductive, learning pro-
cess. That is, by calculating the weakest preimage of the explanation it produces
a hypothesis h that follows deductively from the domain theory B, while covering
the training data D. To be more precise, PROLOG-EBG outputs a hypothesis h that
satisfies the following two constraints:

where the training data D consists of a set of training examples in which xi is the
ith training instance and f (x i) is its target value (f is the target function). Notice
the first of these constraints is simply a formalization of the usual requirement in
machine learning, that the hypothesis h correctly predict the target value f (x i) for
each instance xi in the training data.t Of course there will, in general, be many

t ~ e r e we include P R O L O G - S ~ Y ~ negation-by-failure in our definition of entailment (F), so that ex-
amples are entailed to be negative examples if they cannot be proven to be positive.

alternative hypotheses that satisfy this first constraint. The second constraint de-
scribes the impact of the domain theory in PROLOG-EBL: The output hypothesis is
further constrained so that it must follow from the domain theory and the data. This
second constraint reduces the ambiguity faced by the learner when it must choose
a hypothesis. Thus, the impact of the domain theory is to reduce the effective size
of the hypothesis space and hence reduce the sample complexity of learning.

Using similar notation, we can state the type of knowledge that is required
by PROLOG-EBG for its domain theory. In particular, PROLOG-EBG assumes the
domain theory B entails the classifications of the instances in the training data:

This constraint on the domain theory B assures that an explanation can be con-
structed for each positive example.

It is interesting to compare the PROLOG-EBG learning setting to the setting
for inductive logic programming (ILP) discussed in Chapter 10. In that chapter,
we discussed a generalization of the usual inductive learning task, in which back-
ground knowledge B' is provided to the learner. We will use B' rather than B to
denote the background knowledge used by ILP, because it does not typically sat-
isfy the constraint given by Equation (1 1.3). ILP is an inductive learning system,
whereas PROLOG-EBG is deductive. ILP uses its background knowledge B' to en-
large the set of hypotheses to be considered, whereas PROLOG-EBG uses its domain
theory B to reduce the set of acceptable hypotheses. As stated in Equation (10.2),
ILP systems output a hypothesis h that satisfies the following constraint:

Note the relationship between this expression and the constraints on h imposed
by PROLOG-EBG (given by Equations (1 1.1) and (1 1.2)). This ILP constraint on
h is a weakened form of the constraint given by Equation (1 1.1)-the ILP con-
straint requires only that (B' A h /\xi) k f (xi), whereas the PROLOG-EBG constraint
requires the more strict (h xi) k f (xi). Note also that ILP imposes no constraint
corresponding to the PROLOG-EBG constraint of Equation (1 1.2).

11.3.3 Inductive Bias in Explanation-Based Learning
Recall from Chapter 2 that the inductive bias of a learning algorithm is a set
of assertions that, together with the training examples, deductively entail sub-
sequent predictions made by the learner. The importance of inductive bias is
that it characterizes how the learner generalizes beyond the observed training
examples.

What is the inductive bias of PROLOG-EBG? In PROLOG-EBG the output hy-
pothesis h follows deductively from DAB, as described by Equation (1 1.2). There-
fore, the domain theory B is a set of assertions which, together with the training
examples, entail the output hypothesis. Given that predictions of the learner follow
from this hypothesis h, it appears that the inductive bias of PROLOG-EBG is simply
the domain theory B input to the learner. In fact, this is the case except for one

additional detail that must be considered: There are many alternative sets of Horn
clauses entailed by the domain theory. The remaining component of the inductive
bias is therefore the basis by which PROLOG-EBG chooses among these alternative
sets of Horn clauses. As we saw above, PROLOG-EBG employs a sequential cover-
ing algorithm that continues to formulate additional Horn clauses until all positive
training examples have been covered. Furthermore, each individual Horn clause
is the most general clause (weakest preimage) licensed by the explanation of the
current training example. Therefore, among the sets of Horn clauses entailed by
the domain theory, we can characterize the bias of PROLOG-EBG as a preference
for small sets of maximally general Horn clauses. In fact, the greedy algorithm of
PROLOG-EBG is only a heuristic approximation to the exhaustive search algorithm
that would be required to find the truly shortest set of maximally general Horn
clauses. Nevertheless, the inductive bias of PROLOG-EBG can be approximately
characterized in this fashion.

Approximate inductive bias of PROLOG-EBG: The domain theory B, plus a pref-
erence for small sets of maximally general Horn clauses.

The most important point here is that the inductive bias of PROLOG-EBG-
the policy by which it generalizes beyond the training data-is largely determined
by the input domain theory. This lies in stark contrast to most of the other learning
algorithms we have discussed (e.g., neural networks, decision tree learning), in
which the inductive bias is a fixed property of the learning algorithm, typically
determined by the syntax of its hypothesis representation. Why is it important
that the inductive bias be an input parameter rather than a fixed property of the
learner? Because, as we have discussed in Chapter 2 and elsewhere, there is
no universally effective inductive bias and because bias-free learning is futile.
Therefore, any attempt to develop a general-purpose learning method must at
minimum allow the inductive bias to vary with the learning problem at hand.
On a more practical level, in many tasks it is quite natural to input domain-
specific knowledge (e.g., the knowledge about Weight in the SafeToStack ex-
ample) to influence how the learner will generalize beyond the training data.
In contrast, it is less natural to "implement" an appropriate bias by restricting
the syntactic form of the hypotheses (e.g., prefer short decision trees). Finally,
if we consider the larger issue of how an autonomous agent may improve its
learning capabilities over time, then it is attractive to have a learning algorithm
whose generalization capabilities improve as it acquires more knowledge of its
domain.

11.3.4 Knowledge Level Learning
As pointed out in Equation (1 1.2), the hypothesis h output by PROLOG-EBG follows
deductively from the domain theory B and training data D. In fact, by examining
the PROLOG-EBG algorithm it is easy to see that h follows directly from B alone,
independent of D. One way to see this is to imagine an algorithm that we might

call LEMMA-ENUMERATOR. The LEMMA-ENUMERATOR algorithm simply enumerates
all proof trees that conclude the target concept based on assertions in the domain
theory B. For each such proof tree, LEMMA-ENUMERATOR calculates the weakest
preimage and constructs a Horn clause, in the same fashion as PROLOG-EBG. The
only difference between LEMMA-ENUMERATOR and PROLOG-EBG is that LEMMA-
ENUMERATOR ignores the training data and enumerates all proof trees.

Notice LEMMA-ENUMERATOR will output a superset of the Horn clauses output
by PROLOG-EBG. Given this fact, several questions arise. First, if its hypotheses
follow from the domain theory alone, then what is the role of training data in
PROLOG-EBG? The answer is that training examples focus the PROLOG-EBG al-
gorithm on generating rules that cover the distribution of instances that occur in
practice. In our original chess example, for instance, the set of all possible lemmas
is huge, whereas the set of chess positions that occur in normal play is only a
small fraction of those that are syntactically possible. Therefore, by focusing only
on training examples encountered in practice, the program is likely to develop a
smaller, more relevant set of rules than if it attempted to enumerate all possible
lemmas about chess.

The second question that arises is whether PROLOG-EBG can ever learn a
hypothesis that goes beyond the knowledge that is already implicit in the domain
theory. Put another way, will it ever learn to classify an instance that could not
be classified by the original domain theory (assuming a theorem prover with
unbounded computational resources)? Unfortunately, it will not. If B F h, then
any classification entailed by h will also be entailed by B. Is this an inherent
limitation of analytical or deductive learning methods? No, it is not, as illustrated
by the following example.

To produce an instance of deductive learning in which the learned hypothesis
h entails conclusions that are not entailed by B, we must create an example where
B y h but where D A B F h (recall the constraint given by Equation (11.2)).
One interesting case is when B contains assertions such as "If x satisfies the
target concept, then so will g(x)." Taken alone, this assertion does not entail the
classification of any instances. However, once we observe a positive example, it
allows generalizing deductively to other unseen instances. For example, consider
learning the PlayTennis target concept, describing the days on which our friend
Ross would like to play tennis. Imagine that each day is described only by the
single attribute Humidity, and the domain theory B includes the single assertion
"If Ross likes to play tennis when the humidity is x, then he will also like to play
tennis when the humidity is lower than x," which can be stated more formally as

(Vx) IF ((PlayTennis = Yes) t (Humidity = x))
THEN ((PlayTennis = Yes) t (Humidity 5 x))

Note that this domain theory does not entail any conclusions regarding which
instances are positive or negative instances of PlayTennis. However, once the
learner observes a positive example day for which Humidity = .30, the domain
theory together with this positive example entails the following general hypothe-

CHAPTER 11 ANALYTICAL LEARNING 325

sis h:

(PlayTennis = Yes) t- (Humidity 5 .30)

To summarize, this example illustrates a situation where B I+ h, but where
B A D I- h. The learned hypothesis in this case entails predictions that are not
entailed by the domain theory alone. The phrase knowledge-level learning is some-
times used to refer to this type of learning, in which the learned hypothesis entails
predictions that go beyond those entailed by the domain theory. The set of all
predictions entailed by a set of assertions Y is often called the deductive closure
of Y . The key distinction here is that in knowledge-level learning the deductive
closure of B is a proper subset of the deductive closure of B + h.

A second example of knowledge-level analytical learning is provided by con-
sidering a type of assertions known as determinations, which have been explored
in detail by Russell (1989) and others. Determinations assert that some attribute of
the instance is fully determined by certain other attributes, without specifying the
exact nature of the dependence. For example, consider learning the target concept
"people who speak Portuguese," and imagine we are given as a domain theory the
single determination assertion "the language spoken by a person is determined by
their nationality." Taken alone, this domain theory does not enable us to classify
any instances as positive or negative. However, if we observe that "Joe, a 23-
year-old left-handed Brazilian, speaks Portuguese," then we can conclude from
this positive example and the domain theory that "all Brazilians speak Portuguese."

Both of these examples illustrate how deductive learning can produce output
hypotheses that are not entailed by the domain theory alone. In both of these cases,
the output hypothesis h satisfies B A D I- h, but does not satisfy B I- h. In both
cases, the learner deduces a justified hypothesis that does not follow from either
the domain theory alone or the training data alone.

11.4 EXPLANATION-BASED LEARNING OF SEARCH CONTROL
KNOWLEDGE
As noted above, the practical applicability of the PROLOG-EBG algorithm is re-
stricted by its requirement that the domain theory be correct and complete. One
important class of learning problems where this requirement is easily satisfied is
learning to speed up complex search programs. In fact, the largest scale attempts to
apply explanation-based learning have addressed the problem of learning to con-
trol search, or what is sometimes called "speedup" learning. For example, playing
games such as chess involves searching through a vast space of possible moves
and board positions to find the best move. Many practical scheduling and optimiza-
tion problems are easily formulated as large search problems, in which the task is
to find some move toward the goal state. In such problems the definitions of the
legal search operators, together with the definition of the search objective, provide
a complete and correct domain theory for learning search control knowledge.

Exactly how should we formulate the problem of learning search control so
that we can apply explanation-based learning? Consider a general search problem
where S is the set of possible search states, 0 is a set of legal search operators that
transform one search state into another, and G is a predicate defined over S that
indicates which states are goal states. The problem in general is to find a sequence
of operators that will transform an arbitrary initial state si to some final state sf
that satisfies the goal predicate G. One way to formulate the learning problem is to
have our system learn a separate target concept for each of the operators in 0. In
particular, for each operator o in 0 it might attempt to learn the target concept "the
set of states for which o leads toward a goal state." Of course the exact choice
of which target concepts to learn depends on the internal structure of problem
solver that must use this learned knowledge. For example, if the problem solver
is a means-ends planning system that works by establishing and solving subgoals,
then we might instead wish to learn target concepts such as "the set of planning
states in which subgoals of type A should be solved before subgoals of type B."

One system that employs explanation-based learning to improve its search
is PRODIGY (Carbonell et al. 1990). PRODIGY is a domain-independent planning
system that accepts the definition of a problem domain in terms of the state
space S and operators 0. It then solves problems of the form "find a sequence
of operators that leads from initial state si to a state that satisfies goal predicate
G." PRODIGY uses a means-ends planner that decomposes problems into subgoals,
solves them, then combines their solutions into a solution for the full problem.
Thus, during its search for problem solutions PRODIGY repeatedly faces questions
such as "Which subgoal should be solved next?'and "Which operator should
be considered for solving this subgoal?' Minton (1988) describes the integration
of explanation-based learning into PRODIGY by defining a set of target concepts
appropriate for these kinds of control decisions that it repeatedly confronts. For
example, one target concept is "the set of states in which subgoal A should be
solved before subgoal B." An example of a rule learned by PRODIGY for this target
concept in a simple block-stacking problem domain is

IF One subgoal to be solved is On@, y), and
One subgoal to be solved is On(y, z)

THEN Solve the subgoal On(y, z) before On(x, y)

To understand this rule, consider again the simple block stacking problem illus-
trated in Figure 9.3. In the problem illustrated by that figure, the goal is to stack
the blocks so that they spell the word "universal." PRODIGY would decompose this
problem into several subgoals to be achieved, including On(U, N), On(N, I), etc.
Notice the above rule matches the subgoals On(U, N) and On(N, I), and recom-
mends solving the subproblem On(N, I) before solving On(U, N). The justifica-
tion for this rule (and the explanation used by PRODIGY to learn the rule) is that
if we solve the subgoals in the reverse sequence, we will encounter a conflict in
which we must undo the solution to the On(U, N) subgoal in order to achieve the
other subgoal On(N, I). PRODIGY learns by first encountering such a conflict, then

explaining to itself the reason for this conflict and creating a rule such as the one
above. The net effect is that PRODIGY uses domain-independent knowledge about
possible subgoal conflicts, together with domain-specific knowledge of specific
operators (e.g., the fact that the robot can pick up only one block at a time), to
learn useful domain-specific planning rules such as the one illustrated above.

The use of explanation-based learning to acquire control knowledge for
PRODIGY has been demonstrated in a variety of problem domains including the
simple block-stacking problem above, as well as more complex scheduling and
planning problems. Minton (1988) reports experiments in three problem domains,
in which the learned control rules improve problem-solving efficiency by a factor
of two to four. Furthermore, the performance of these learned rules is comparable
to that of handwritten rules across these three problem domains. Minton also de-
scribes a number of extensions to the basic explanation-based learning procedure
that improve its effectiveness for learning control knowledge. These include meth-
ods for simplifying learned rules and for removing learned rules whose benefits
are smaller than their cost.

A second example of a general problem-solving architecture that incorpo-
rates a form of explanation-based learning is the SOAR system (Laird et al. 1986;
Newel1 1990). SOAR supports a broad variety of problem-solving strategies that
subsumes PRODIGY'S means-ends planning strategy. Like PRODIGY, however, SOAR
learns by explaining situations in which its current search strategy leads to ineffi-
ciencies. When it encounters a search choice for which it does not have a definite
answer (e.g., which operator to apply next) SOAR reflects on this search impasse,
using weak methods such as generate-and-test to determine the correct course of
action. The reasoning used to resolve this impasse can be interpreted as an expla-
nation for how to resolve similar impasses in the future. SOAR uses a variant of
explanation-based learning called chunking to extract the general conditions un-
der which the same explanation applies. SOAR has been applied in a great number
of problem domains and has also been proposed as a psychologically plausible
model of human learning processes (see Newel1 1990).

PRODIGY and SOAR demonstrate that explanation-based learning methods can
be successfully applied to acquire search control knowledge in a variety of problem
domains. Nevertheless, many or most heuristic search programs still use numerical
evaluation functions similar to the one described in Chapter 1, rather than rules
acquired by explanation-based learning. What is the reason for this? In fact, there
are significant practical problems with applying EBL to learning search control.
First, in many cases the number of control rules that must be learned is very large
(e.g., many thousands of rules). As the system learns more and more control rules
to improve its search, it must pay a larger and larger cost at each step to match this
set of rules against the current search state. Note this problem is not specific to
explanation-based learning; it will occur for any system that represents its learned
knowledge by a growing set of rules. Efficient algorithms for matching rules can
alleviate this problem, but not eliminate it completely. Minton (1988) discusses
strategies for empirically estimating the computational cost and benefit of each
rule, learning rules only when the estimated benefits outweigh the estimated costs

and deleting rules later found to have negative utility. He describes how using
this kind of utility analysis to determine what should be learned and what should
be forgotten significantly enhances the effectiveness of explanation-based learning
in PRODIGY. For example, in a series of robot block-stacking problems, PRODIGY
encountered 328 opportunities for learning a new rule, but chose to exploit only 69
of these, and eventually reduced the learned rules to a set of 19, once low-utility
rules were eliminated. Tambe et al. (1990) and Doorenbos (1993) discuss how to
identify types of rules that will be particularly costly to match, as well as methods
for re-expressing such rules in more efficient forms and methods for optimizing
rule-matching algorithms. Doorenbos (1993) describes how these methods enabled
SOAR to efficiently match a set of 100,000 learned rules in one problem domain,
without a significant increase in the cost of matching rules per state.

A second practical problem with applying explanation-based learning to
learning search control is that in many cases it is intractable even to construct
the explanations for the desired target concept. For example, in chess we might
wish to learn a target concept such as "states for which operator A leads toward
the optimal solution." Unfortunately, to prove or explain why A leads toward the
optimal solution requires explaining that every alternative operator leads to a less
optimal outcome. This typically requires effort exponential in the search depth.
Chien (1993) and Tadepalli (1990) explore methods for "lazy" or "incremental"
explanation, in which heuristics are used to produce partial and approximate, but
tractable, explanations. Rules are extracted from these imperfect explanations as
though the explanations were perfect. Of course these learned rules may be in-
correct due to the incomplete explanations. The system accommodates this by
monitoring the performance of the rule on subsequent cases. If the rule subse-
quently makes an error, then the original explanation is incrementally elaborated
to cover the new case, and a more refined rule is extracted from this incrementally
improved explanation.

Many additional research efforts have explored the use of explanation-based
learning for improving the efficiency of search-based problem solvers (for exam-
ple, Mitchell 1981; Silver 1983; Shavlik 1990; Mahadevan et al. 1993; Gervasio
and DeJong 1994; DeJong 1994). Bennett and DeJong (1996) explore explanation-
based learning for robot planning problems where the system has an imperfect
domain theory that describes its world and actions. Dietterich and Flann (1995)
explore the integration of explanation-based learning with reinforcement learning
methods discussed in Chapter 13. Mitchell and Thrun (1993) describe the appli-
cation of an explanation-based neural network learning method (see the EBNN
algorithm discussed in Chapter 12) to reinforcement learning problems.

11.5 SUMMARY AND FURTHER READING
The main points of this chapter include:

In contrast to purely inductive learning methods that seek a hypothesis to
fit the training data, purely analytical learning methods seek a hypothesis

that fits the learner's prior knowledge and covers the training examples.
Humans often make use of prior knowledge to guide the formation of new
hypotheses. This chapter examines purely analytical learning methods. The
next chapter examines combined inductive-analytical learning.

a Explanation-based learning is a form of analytical learning in which the
learner processes each novel training example by (1) explaining the observed
target value for this example in terms of the domain theory, (2) analyzing this
explanation to determine the general conditions under which the explanation
holds, and (3) refining its hypothesis to incorporate these general conditions.

a PROLOG-EBG is an explanation-based learning algorithm that uses first-order
Horn clauses to represent both its domain theory and its learned hypothe-
ses. In PROLOG-EBG an explanation is a PROLOG proof, and the hypothesis
extracted from the explanation is the weakest preimage of this proof. As a
result, the hypotheses output by PROLOG-EBG follow deductively from its
domain theory.

a Analytical learning methods such as PROLOG-EBG construct useful interme-
diate features as a side effect of analyzing individual training examples. This
analytical approach to feature generation complements the statistically based
generation of intermediate features (eg., hidden unit features) in inductive
methods such as BACKPROPAGATION.

a Although PROLOG-EBG does not produce hypotheses that extend the deduc-
tive closure of its domain theory, other deductive learning procedures can.
For example, a domain theory containing determination assertions (e.g., "na-
tionality determines language") can be used together with observed data to
deductively infer hypotheses that go beyond the deductive closure of the
domain theory.

a One important class of problems for which a correct and complete domain
theory can be found is the class of large state-space search problems. Systems
such as PRODIGY and SOAR have demonstrated the utility of explanation-
based learning methods for automatically acquiring effective search control
knowledge that speeds up problem solving in subsequent cases.

a Despite the apparent usefulness of explanation-based learning methods in
humans, purely deductive implementations such as PROLOG-EBG suffer the
disadvantage that the output hypothesis is only as correct as the domain
theory. In the next chapter we examine approaches that combine inductive
and analytical learning methods in order to learn effectively from imperfect
domain theories and limited training data.

The roots of analytical learning methods can be traced to early work by
Fikes et al. (1972) on learning macro-operators through analysis of operators
in ABSTRIPS and to somewhat later work by Soloway (1977) on the use of
explicit prior knowledge in learning. Explanation-based learning methods similar
to those discussed in this chapter first appeared in a number of systems developed
during the early 1980s, including DeJong (1981); Mitchell (1981); Winston et al.

(1983); and Silver (1983). DeJong and Mooney (1986) and Mitchell et al. (1986)
provided general descriptions of the explanation-based learning paradigm, which
helped spur a burst of research on this topic during the late 1980s. A collection of
research on explanation-based learning performed at the University of Illinois is
described by DeJong (1993), including algorithms that modify the structure of the
explanation in order to correctly generalize iterative and temporal explanations.
More recent research has focused on extending explanation-based methods to
accommodate imperfect domain theories and to incorporate inductive together
with analytical learning (see Chapter 12). An edited collection exploring the role
of goals and prior knowledge in human and machine learning is provided by Ram
and Leake (1995), and a recent overview of explanation-based learning is given
by DeJong (1997).

The most serious attempts to employ explanation-based learning with perfect
domain theories have been in the area of learning search control, or "speedup"
learning. The SOAR system described by Laird et al. (1986) and the PRODIGY
system described by Carbonell et al. (1990) are among the most developed sys-
tems that use explanation-based learning methods for learning in problem solv-
ing. Rosenbloom and Laird (1986) discuss the close relationship between SOAR'S
learning method (called "chunking") and other explanation-based learning meth-
ods. More recently, Dietterich and Flann (1995) have explored the combination
of explanation-based learning with reinforcement learning methods for learning
search control.

While our primary purpose here is to study machine learning algorithms, it
is interesting to note that experimental studies of human learning provide support
for the conjecture that human learning is based on explanations. For example,
Ahn et al. (1987) and Qin et al. (1992) summarize evidence supporting the con-
jecture that humans employ explanation-based learning processes. Wisniewski and
Medin (1995) describe experimental studies of human learning that suggest a rich
interplay between prior knowledge and observed data to influence the learning
process. Kotovsky and Baillargeon (1994) describe experiments that suggest even
1 1-month old infants build on prior knowledge as they learn.

The analysis performed in explanation-based learning is similar to certain
kinds of program optimization methods used for PROLOG programs, such as par-
tial evaluation; van Harmelen and Bundy (1988) provide one discussion of the
relationship.

EXERCISES
11.1. Consider the problem of learning the target concept "pairs of people who live in

the same house," denoted by the predicate HouseMates(x, y). Below is a positive
example of the concept.
HouseMates(Joe, Sue)
Person(Joe) Person(Sue)
Sex(Joe, Male) Sex(Sue, Female)
Hair Color (Joe, Black) Haircolor (Sue, Brown)

Height (Joe , Short) Height(Sue, Short)
Nationality(Joe, U S) Nationality(Sue, U S)
Mother(Joe, M a r y) Mother(Sue, Mary)
Age (Joe , 8) Age(Sue, 6)

The following domain theory is helpful for acquiring the HouseMates
concept:

HouseMates(x, y) t InSameFamily(x, y)
HouseMates(x, y) t FraternityBrothers(x, y)
InSameFamily(x, y) t Married(x, y)
InSameFamily (x , y) t Youngster(x) A Youngster (y) A SameMother (x , y)
SameMother(x, y) t Mother(x, z) A Mother(y , z)
Youngster(x) t Age(x, a) A LessThan(a, 10)

Apply the PROLOG-EBG algorithm to the task of generalizing from the above
instance, using the above domain theory. In particular,
(a) Show a hand-trace of the PROLOG-EBG algorithm applied to this problem; that

is, show the explanation generated for the training instance, show the result of
regressing the target concept through this explanation, and show the resulting
Horn clause rule.

(b) Suppose that the target concept is "people who live with Joe" instead of "pairs
of people who live together." Write down this target concept in terms of the
above formalism. Assuming the same training instance and domain theory as
before, what Horn clause rule will PROLOG-EBG produce for this new target
concept?

As noted in Section 11.3.1, PROLOG-EBG can construct useful new features that are
not explicit features of the instances, but that are defined in terms of the explicit
features and that are useful for describing the appropriate generalization. These
features are derived as a side effect of analyzing the training example explanation. A
second method for deriving useful features is the BACKPROPAGATION algorithm for
multilayer neural networks, in which new features are learned by the hidden units
based on the statistical properties of a large number of examples. Can you suggest
a way in which one might combine these analytical and inductive approaches to
generating new features? (Warning: This is an open research problem.)

REFERENCES
Ahn, W., Mooney, R. J., Brewer, W. F., & DeJong, G. F. (1987). Schema acquisition from one

example: Psychological evidence for explanation-based learning. Ninth Annual Conference of
the Cognitive Science Society (pp. 50-57). Hillsdale, NJ: Lawrence Erlbaum Associates.

Bennett, S. W., & DeJong, G. F. (1996). Real-world robotics: Learning to plan for robust execution.
Machine kaming, 23, 121.

Carbonell, J., Knoblock, C., & Minton, S. (1990). PRODIGY: An integrated architecture for planning
and learning. In K. VanLehn (Ed.), Architectures for Intelligence. Hillsdale, NJ: Lawrence
Erlbaum Associates.

Chien, S. (1993). NONMON: Learning with recoverable simplifications. In G. DeJong (Ed.), Znvesti-
gating explanation-based learning (pp. 4 1 M 3 4) . Boston, MA: Kluwer Academic Publishers.

Davies, T. R., and Russell, S. J. (1987). A logical approach to reasoning by analogy. Proceedings of
the 10th International Joint Conference on ArtiJcial Intelligence (pp. 264-270). San Mateo,
CA: Morgan Kaufmann.

DeJong, G. (1981). Generalizations based on explanations. Proceedings of the Seventh International
Joint Conference on ArtiJicial Intelligence (pp. 67-70).

DeJong, G., & Mooney, R. (1986). Explanation-based learning: An alternative view. Machine Learn-
ing, 1(2), 145-176.

DeJong, G. (Ed.). (1993). Investigating explanation-based learning. Boston, MA: Kluwer Academic
Publishers.

DeJong, G. (1994). Learning to plan in continuous domains. ArtiJicial Intelligence, 64(1), 71-141.
DeJong, G. (1997). Explanation-based learning. In A. Tucker (Ed.), The Computer Science and

Engineering Handbook (pp. 499-520). Boca Raton, FL: CRC Press.
Dietterich, T. G., Flann, N. S. (1995). Explanation-based learning and reinforcement learning: A

unified view. Proceedings of the 12th International Conference on Machine Learning (pp.
176-184). San Mateo, CA: Morgan Kaufmann.

Doorenbos, R. E. (1993). Matching 100,000 learned rules. Proceedings of the Eleventh National
Conference on ArtiJicial Intelligence (pp. 290-296). AAAI Press/MIT Press.

Fikes, R., Hart, P., & Nisson, N. (1972). Learning and executing generalized robot plans. ArtiJicial
Intelligence, 3(4), 251-288.

Fisher, D., Subrarnanian, D., & Tadepalli, P. (1992). An overview of current research on knowl-
edge compilation and speedup learning. Proceedings of the Second International Workshop on
Knowledge Compilation and Speedup Learning.

Flann, N. S., & Dietterich, T. G. (1989). A study of explanation-based methods for inductive learning.
Machine Learning, 4, 187-226.

Gervasio, M. T., & DeJong, G. F. (1994). An incremental learning approach to completable planning.
Proceedings of the Eleventh International Conference on Machine Learning, New Brunswick,
NJ. San Mateo, CA: Morgan Kaufmann.

van Harmelen, F., & Bundy, A. (1988). Explanation-based generalisation = partial evaluation. Arti-
ficial Intelligence, 36(3), 401-412.

Kedar-Cabelli, S., & McCarty, T. (1987). Explanation-based generalization as resolution theorem
proving. Proceedings of the Fourth International Workshop on Machine Learning (pp. 383-
389). San Francisco: Morgan Kaufmann.

Kotovsky, L., & Baillargeon, R. (1994). Calibration-based reasoning about collision events in 11-
month-old infants. Cognition, 51, 107-129.

Laird, J. E., Rosenbloom, P. S., & Newell, A. (1986). Chunking in SOAR: The anatomy of a general
learning mechanism. Machine Learning, 1, 11.

Mahadevan, S., Mitchell, T., Mostow, D. J., Steinberg, L., & Tadepalli, P. (1993). An apprentice-
based approach to knowledge acquisition. In S. Mahadevan, T. Mitchell, D. J. Mostow, L.
Steinberg, & P. Tadepalli (Eds.), ArtiiJicial Intelligence, 64(1), 1-52.

Minton, S. (1988). Learning search control knowledge: An explanation-based approach. Boston, MA:
Kluwer Academic Publishers.

Miton, S., Carbonell, J., Knoblock, C., Kuokka, D., Etzioni, O., & Gil, Y. (1989). Explanation-based
leaming: A problem solving perspective. ArtiJicial Intelligence, 40, 63-1 18.

Minton, S. (1990). Quantitative results concerning the utility of explanation-based leaming. ArtiJicial
Intelligence, 42, 363-391.

Mitchell, T. M. (1981). Toward combining empirical and analytical methods for inferring heuristics
(Technical Report LCSR-TR-27), Rutgers Computer Science Department. (Also reprinted in
A. Elithorn & R. Banerji (Eds), ArtiJicial and Human Intelligence. North-Holland, 1984.)

Mitchell, T. M. (1983). Learning and problem-solving. Proceedings of the Eighth International Joint
Conference on ArtiiJicial Intelligence. San Francisco: Morgan Kaufmann.

Mitchell, T. M., Keller, R., & Kedar-Cabelli, S. (1986). Explanation-based generalization: A unifying
view. Machine Learning, 1(1), 47-80.

Mitchell, T. M. (1990). Becoming increasingly reactive. Proceedings of the Eighth National Confer-
ence on ArtQicial Intelligence. Medo Park, CA: AAAI Press.

Mitchell, T. M., & Thrun, S. B. (1993). Explanation-based neural network learning for robot control.
In S. Hanson et al. (Eds.), Advances in neural infomtionprocessing systems 5 (pp. 287-2941.
San Mateo, CA: Morgan-Kaufmann Press.

CHAF'TER 11 ANALYTICAL LEARNING 333

Newell, A. (1990). Unified theories of cognition. Cambridge, MA: Harvard University Press.
Qin, Y., Mitchell, T., & Simon, H. (1992). Using explanation-based generalization to simulate hu-

man learning from examples and learning by doing. Proceedings of the Florida A1 Research
Symposium (pp. 235-239).

Ram, A., & Leake, D. B. (Eds.). (1995). Goal-driven learning. Cambridge, MA: MIT Press.
Rosenblwm, P., & Laird, J. (1986). Mapping explanation-based generalization onto SOAR. Fifih

National Conference on Artificial Intelligence (pp. 561-567). AAAI Press.
Russell, S. (1989). The use of knowledge in analogy and induction. San Francisco: Morgan Kaufmann.
Shavlik, J. W. (1990). Acquiring recursive and iterative concepts with explanation-based learning.

Machine Learning, 5, 39.
Silver, B. (1983). Learning equation solving methods from worked examples. Proceedings of the

I983 International Workshop on Machine Learning (pp. 99-104). CS Department, University
of Illinois at Urbana-Champaign.

Silver, B. (1986). Precondition analysis: Learning control information. In R. Michalski et al. (Eds.),
Machine Learning: An AI approach (pp. 647470). San Mateo, CA. Morgan Kaufmann.

Soloway, E. (1977). Knowledge directed learning using multiple levels of description (Ph.D. thesis).
University of Massachusetts, Arnherst.

Tadepalli, P. (1990). Tractable learning and planning in games (Technical report ML-TR-3 1) (Ph.D.
dissertation). Rutgers University Computer Science Department.

Tambe, M., Newell, A., & Rosenbloom, P. S. (1990). The problem of expensive chunks and its
solution by restricting expressiveness. Machine Learning, 5(4), 299-348.

Waldinger, R. (1977). Achieving several goals simultaneously. In E. Elcock & D. Michie Pds.),
Machine Intelligence 8. London: Ellis Horwood Ltd.

Winston, P., Binford, T., Katz, B., & Lowry, M. (1983). Learning physical descriptions from func-
tional definitions, examples, and precedents. Proceedings of the National Conference on Arti-
jcial Intelligence (pp. 433-439). san Mateo, CA: Morgan Kaufmann.

Wisniewski, E. J., & Medin, D. L. (1995). Harpoons and long sticks: The interaction of theory
and similarity in rule induction. In A. Ram & D. B. Leake (Eds.), Goal-driven learning @p.
177-210). Cambridge, MA: MIT Press.

CHAPTER

COMBINING
INDUCTIVE AND
ANALYTICAL
LEARNING

Purely inductive learning methods formulate general hypotheses by finding empir-
ical regularities over the training examples. Purely analytical methods use prior
knowledge to derive general hypotheses deductively., This chapter considers meth-
ods that combine inductive and analytical mechanisms to obtain the benefits of both
approaches: better generalization accuracy when prior knowledge is available and re-
liance on observed training data to overcome shortcomings in prior knowledge. The
resulting combined methods outperform both purely inductive and purely analyti-
cal learning methods. This chapter considers inductive-analytical learning methods
based on both symbolic and artificial neural network representations.

12.1 MOTIVATION
In previous chapters we have seen two paradigms for machine learning: inductive
learning and analytical learning. Inductive methods, such as decision tree induc-
tion and neural network BACKPROPAGATION, seek general hypotheses that fit the
observed training data. Analytical methods, such as PROLOG-EBG, seek general
hypotheses that fit prior knowledge while covering the observed data. These two
learning paradigms are based on fundamentally different justifications for learned
hypotheses and offer complementary advantages and disadvantages. Combining
them offers the possibility of more powerful learning methods.

CHAPTER 12 COMBINING INDUCTIVE AND ANALYTICAL LEARNING 335

Purely analytical learning methods offer the advantage of generalizing more
accurately from less data by using prior knowledge to guide learning. However,
they can be misled when given incorrect or insufficient prior knowledge. Purely
inductive methods offer the advantage that they require no explicit prior knowl-
edge and learn regularities based solely on the training data. However, they can
fail when given insufficient training data, and can be misled by the implicit in-
ductive bias they must adopt in order to generalize beyond the observed data.
Table 12.1 summarizes these complementary advantages and pitfalls of induc-
tive and analytical learning methods. This chapter considers the question of how
to combine the two into a single algorithm that captures the best aspects of
both.

The difference between inductive and analytical learning methods can be
seen in the nature of the justiJications that can be given for their learned hypothe-
ses. Hypotheses output by purely analytical learning methods such as PROLOG-
EBG carry a logical justification; the output hypothesis follows deductively from
the domain theory and training examples. Hypotheses output by purely inductive
learning methods such as BACKPROPAGATION carry a statistical justification; the
output hypothesis follows from statistical arguments that the training sample is
sufficiently large that it is probably representative of the underlying distribution
of examples. This statistical justification for induction is clearly articulated in the
PAC-learning results discussed in Chapter 7.

Given that analytical methods provide logically justified hypotheses and in-
ductive methods provide statistically justified hypotheses, it is easy to see why
combining them would be useful: Logical justifications are only as compelling as
the assumptions, or prior knowledge, on which they are built. They are suspect or
powerless if prior knowledge is incorrect or unavailable. Statistical justifications
are only as compelling as the data and statistical assumptions on which they rest.
They are suspect or powerless when assumptions about the underlying distribu-
tions cannot be trusted or when data is scarce. In short, the two approaches work
well for different types of problems. By combining them we can hope to devise
a more general learning approach that covers a more broad range of learning
tasks.

Figure 12.1 summarizes a spectrum of learning problems that varies by the
availability of prior knowledge and training data. At one extreme, a large volume

Inductive learning Analytical learning

Goal: Hypothesis fits data Hypothesis fits domain theory
Justification: Statistical inference Deductive inference
Advantagex Requires little prior knowledge Learns from scarce data
Pitfalls: Scarce data, incorrect bias Imperfect domain theory

TABLE 12.1
Comparison of purely analytical and purely inductive learning.

Inductive learning Analytical learning
plentiful data

No prior knowledge
Perfect priorknowledge

Scarce data

FIGURE 12.1
A spectrum of learning tasks. At the left extreme, no prior knowledge is available, and purely
inductive learning methods with high sample complexity are therefore necessary. At the rightmost
extreme, a perfect domain theory is available, enabling the use of purely analytical methods such as
PROLOG-EBG. Most practical problems lie somewhere between these two extremes.

of training data is available, but no prior knowledge. At the other extreme, strong
prior knowledge is available, but little training data. Most practical learning prob-
lems lie somewhere between these two extremes of the spectrum. For example, in
analyzing a database of medical records to learn "symptoms for which treatment
x is more effective than treatment y," one often begins with approximate prior
knowledge (e.g., a qualitative model of the cause-effect mechanisms underlying
the disease) that suggests the patient's temperature is more likely to be relevant
than the patient's middle initial. Similarly, in analyzing a stock market database
to learn the target concept "companies whose stock value will double over the
next 10 months," one might have approximate knowledge of economic causes
and effects, suggesting that the gross revenue of the company is more likely to
be relevant than the color of the company logo. In both of these settings, our
own prior knowledge is incomplete, but is clearly useful in helping discriminate
relevant features from irrelevant.

The question considered in this chapter is "What kinds of learning algo-
rithms can we devise that make use of approximate prior knowledge, together
with available data, to form general hypotheses?' Notice that even when using
a purely inductive learning algorithm, one has the opportunity to make design
choices based on prior knowledge of the particular learning task. For example,
when applying BACKPROPAGATION to a problem such as speech recognition, one
must choose the encoding of input and output data, the error function to be rnin-
imized during gradient descent, the number of hidden units, the topology of the
network, the learning rate and momentum, etc. In making these choices, human
designers have the opportunity to embed task-specific knowledge into the learning
algorithm. The result, however, is a purely inductive instantiation of BACKPROPA-
GATION, specialized by the designer's choices to the task of speech recognition.
Our interest here lies in something different. We are interested in systems that
take prior knowledge as an explicit input to the learner, in the same sense that
the training data is an explicit input, so that they remain general purpose algo-
rithms, even while taking advantage of domain-specific knowledge. In brief, our
interest here lies in domain-independent algorithms that employ explicitly input
domain-dependent knowledge.

What criteria should we use to compare alternative approaches to combining
inductive and analytical learning? Given that the learner will generally not know
the quality of the domain theory or the training data in advance, we are interested

CHAF'TER 12 COMBINING INDUCTIVE AND ANALYTICAL LEARNING 337

in general methods that can operate robustly over the entire spectrum of problems
of Figure 12.1. Some specific properties we would like from such a learning
method include:

a Given no domain theory, it should learn at least as effectively as purely
inductive methods.
Given a perfect domain theory, it should learn at least as effectively as
purely analytical methods.

a Given an imperfect domain theory and imperfect training data, it should
combine the two to outperform either purely inductive or purely analytical
methods.

e It should accommodate an unknown level of error in the training data.
a It should accommodate an unknown level of error in the domain theory.

Notice this list of desirable properties is quite ambitious. For example, ac-
commodating errors in the training data is problematic even for statistically based
induction without at least some prior knowledge or assumption regarding the dis-
tribution of errors. Combining inductive and analytical learning is an area of active
current research. While the above list is a fair summary of what we would like
our algorithms to accomplish, we do not yet have algorithms that satisfy all these
constraints in a fully general fashion.

The next section provides a more detailed discussion of the combined
inductive-analytical learning problem. Subsequent sections describe three differ-
ent approaches to combining approximate prior knowledge with available training
data to guide the learner's search for an appropriate hypothesis. Each of these
three approaches has been demonstrated to outperform purely inductive meth-
ods in multiple task domains. For ease of comparison, we use a single example
problem to illustrate all three approaches.

12.2 INDUCTIVE-ANALYTICAL APPROACHES TO LEARNING
12.2.1 The Learning Problem
To summarize, the learning problem considered in this chapter is

Given:
0 A set of training examples D, possibly containing errors
0 A domain theory B, possibly containing errors

A space of candidate hypotheses H

Determine:
A hypothesis that best fits the training examples and domain theory

What precisely shall we mean by "the hypothesis that best fits the training
examples and domain theory?'In particular, shall we prefer hypotheses that fit

the data a little better at the expense of fitting the theory less well, or vice versa?
We can be more precise by defining measures of hypothesis error with respect
to the data and with respect to the domain theory, then phrasing the question in
terms of these errors. Recall from Chapter 5 that errorD(h) is defined to be the
proportion of examples from D that are misclassified by h. Let us define the error
e r r o r ~ (h) of h with respect to a domain theory B to be the probability that h
will disagree with B on the classification of a randomly drawn instance. We can
attempt to characterize the desired output hypothesis in terms of these errors. For
example, we could require the hypothesis that minimizes some combined measure
of these errors, such as

argmin kDerrorD (h) + kBerrorB (h)
h€H

While this appears reasonable at first glance, it is not clear what values to assign
to k~ and kg to specify the relative importance of fitting the data versus fitting the
theory. If we have a very poor theory and a great deal of reliable data, it will be
best to weight e r r o r ~ (h) more heavily. Given a strong theory and a small sample
of very noisy data, the best results would be obtained by weighting errorB(h)
more heavily. Of course if the learner does not know in advance the quality of
the domain theory or training data, it will be unclear how it should weight these
two error components.

An alternative perspective on the question of how to weight prior knowl-
edge and data is the Bayesian perspective. Recall from Chapter 6 that Bayes
theorem describes how to compute the posterior probability P(h1D) of hypothe-
sis h given observed training data D . In particular, Bayes theorem computes this
posterior probability based on the observed data D , together with prior knowledge
in the form of P (h) , P (D) , and P(Dlh) . Thus we can think of P(h) , P (D) , and
P(Dlh) as a form of background knowledge or domain theory, and we can think
of Bayes theorem as a method for weighting this domain theory, together with
the observed data D , to assign a posterior probability P(hlD) to h. The Bayesian
view is that one should simply choose the hypothesis whose posterior probability
is greatest, and that Bayes theorem provides the proper method for weighting
the contribution of this prior knowledge and observed data. Unfortunately, Bayes
theorem implicitly assumes pe$ect knowledge about the probability distributions
P(h) , P (D) , and P(Dlh) . When these quantities are only imperfectly known,
Bayes theorem alone does not prescribe how to combine them with the observed
data. (One possible approach in such cases is to assume prior probability distri-
butions over P (h) , P (D) , and P(D1h) themselves, then calculate the expected
value of the posterior P (h 1 D) . However, this requires additional knowledge about
the priors over P(h) , P (D) , and P(Dlh) , so it does not really solve the general
problem.)

We will revisit the question of what we mean by "best" fit to the hypothesis
and data as we examine specific algorithms. For now, we will simply say that
the learning problem is to minimize some combined measure of the error of the
hypothesis over the data and the domain theory.

CAAPrW 12 COMBINJNG INDUCTIVE AND ANALYTICAL LEARNING 339

12.2.2 Hypothesis Space Search
How can the domain theory and training data best be combined to constrain the
search for an acceptable hypothesis? This remains an open question in machine
learning. This chapter surveys a variety of approaches that have been proposed,
many of which consist of extensions to inductive methods we have already studied
(e.g., BACKPROPAGATION, FOIL).

One way to understand the range of possible approaches is to return to our
view of learning as a task of searching through the space of alternative hypotheses.
We can characterize most learning methods as search algorithms by describing
the hypothesis space H they search, the initial hypothesis ho at which they begin
their search, the set of search operators 0 that define individual search steps, and
the goal criterion G that specifies the search objective. In this chapter we explore
three different methods for using prior knowledge to alter the search performed
by purely inductive methods.

Use prior knowledge to derive an initial hypothesis from which to begin the
search. In this approach the domain theory B is used to construct an ini-
tial hypothesis ho that is consistent with B. A standard inductive method
is then applied, starting with the initial hypothesis ho. For example, the
KBANN system described below learns artificial neural networks in this
way. It uses prior knowledge to design the interconnections and weights
for an initial network, so that this initial network is perfectly consistent
with the given domain theory. This initial network hypothesis is then re-
fined inductively using the BACKPROPAGATION algorithm and available data.
Beginning the search at a hypothesis consistent with the domain theory
makes it more likely that the final output hypothesis will better fit this
theory.

Use prior knowledge to alter the objective of the hypothesis space search.
In this approach, the goal criterion G is modified to require that the out-
put hypothesis fits the domain theory as well as the training examples. For
example, the EBNN system described below learns neural networks in this
way. Whereas inductive learning of neural networks performs gradient de-
scent search to minimize the squared error of the network over the training
data, EBNN performs gradient descent to optimize a different criterion. This
modified criterion includes an additional term that measures the error of the
learned network relative to the domain theory.

0 Use prior knowledge to alter the available search steps. In this approach, the
set of search operators 0 is altered by the domain theory. For example, the
FOCL system described below learns sets of Horn clauses in this way. It is
based on the inductive system FOIL, which conducts a greedy search through
the space of possible Horn clauses, at each step revising its current hypoth-
esis by adding a single new literal. FOCL uses the domain theory to expand
the set of alternatives available when revising the hypothesis, allowing the

addition of multiple literals in a single search step when warranted by the
domain theory. In this way, FOCL allows single-step moves through the
hypothesis space that would correspond to many steps using the original
inductive algorithm. These "macro-moves" can dramatically alter the course
of the search, so that the final hypothesis found consistent with the data is
different from the one that would be found using only the inductive search
steps.

The following sections describe each of these approaches in turn.

12.3 USING PRIOR KNOWLEDGE TO INITIALIZE THE
HYPOTHESIS
One approach to using prior knowledge is to initialize the hypothesis to perfectly fit
the domain theory, then inductively refine this initial hypothesis as needed to fit the
training data. This approach is used by the KBANN (Knowledge-Based Artificial
Neural Network) algorithm to learn artificial neural networks. In KBANN an initial
network is first constructed so that for every possible instance, the classification
assigned by the network is identical to that assigned by the domain theory. The
BACKPROPAGATION algorithm is then employed to adjust the weights of this initial
network as needed to fit the training examples.

It is easy to see the motivation for this technique: if the domain theory is
correct, the initial hypothesis will correctly classify all the training examples and
there will be no need to revise it. However, if the initial hypothesis is found
to imperfectly classify the training examples, then it will be refined inductively
to improve its fit to the training examples. Recall that in the purely inductive
BACKPROPAGATION algorithm, weights are typically initialized to small random
values. The intuition behind KBANN is that even if the domain theory is only
approximately correct, initializing the network to fit this domain theory will give a
better starting approximation to the target function than initializing the network to
random initial weights. This should lead, in turn, to better generalization accuracy
for the final hypothesis.

This initialize-the-hypothesis approach to using the domain theory has been
explored by several researchers, including Shavlik and Towel1 (1989), Towel1
and Shavlik (1994), Fu (1989, 1993), and Pratt (1993a, 1993b). We will use
the KBANN algorithm described in Shavlik and Towel1 (1989) to illustrate this
approach.

12.3.1 The KBANN Algorithm
The KBANN algorithm exemplifies the initialize-the-hypothesis approach to using
domain theories. It assumes a domain theory represented by a set of proposi-
tional, nonrecursive Horn clauses. A Horn clause is propositional if it contains no
variables. The input and output of KBANN are as follows:

-

KBANN(Domain-Theory, Training_Examples)
Domain-Theory: Set of propositional, nonrecursive Horn clauses.
TrainingJxamples: Set of (input output) pairs of the targetfunction.

Analytical step: Create an initial network equivalent to the domain theory.
1. For each instance attribute create a network input.
2. For each Horn clause in the Domain-Theory, create a network unit as follows:

0 Connect the inputs of this unit to the attributes tested by the clause antecedents.
For each non-negated antecedent of the clause, assign a weight of W to the correspond-
ing sigmoid unit input.
For each negated antecedent of the clause, assign a weight of - W to the corresponding
sigmoid unit input.

0 Set the threshold weight wo for this unit to -(n - .5)W, where n is the number of
non-negated antecedents of the clause.

3. Add additional connections among the network units, connecting each network unit at depth
i from the input layer to all network units at depth i + 1. Assign random near-zero weights to
these additional connections.

Inductive step: Refine the initial network.
4. Apply the BACKPROPAGATION algorithm to adjust the initial network weights to fit the

Training-Examples.

TABLE 12.2
The KBANN algorithm. The domain theory is translated into an equivalent neural network (steps
1-3), which is inductively refined using the BACKPROPAGATION algorithm (step 4). A typical value
for the constant W is 4.0.

Given:
0 A set of training examples
0 A domain theory consisting of nonrecursive, propositional Horn clauses

Determine:
0 An artificial neural network that fits the training examples, biased by the

domain theory

The two stages of the KBANN algorithm are first to create an artificial neural
network that perfectly fits the domain theory and second to use the BACKPROPA-
CATION algorithm to refine this initial network to fit the training examples. The
details of this algorithm, including the algorithm for creating the initial network,
are given in Table 12.2 and illustrated in Section 12.3.2.

12.3.2 An Illustrative Example
To illustrate the operation of KBANN, consider the simple learning problem sum-
marized in Table 12.3, adapted from Towel1 and Shavlik (1989). Here each in-
stance describes a physical object in terms of the material from which it is made,
whether it is light, etc. The task is to learn the target concept Cup defined over
such physical objects. Table 12.3 describes a set of training examples and a do-
main theory for the Cup target concept. Notice the domain theory defines a Cup

Domain theory:

Cup t Stable, Lzpable, OpenVessel
Stable t BottomIsFlat

Lijiable t Graspable, Light
Graspable t HasHandle

OpenVessel t HasConcavity, ConcavityPointsUp

Training examples:

BottomIsFlat
ConcavitjPointsUp
Expensive
Fragile
HandleOnTop
HandleOnSide
HasConcavity
HasHandle
Light
MadeOfCeramic
MadeOfPaper
MadeOfstyrofoam

cups

J J J J
J J J J
J J
J J
J 4
J J J J
J J
J J J J
J

J
J J

Non-Cups

2 / 4 4 J
J J J

J J
J J J J
J J

J
J J J J J
J J J
J J J J
J J J

J
J J

TABLE 12.3
The Cup learning task. An approximate domain theory and a set of training examples for the target
concept Cup.

as an object that is Stable, Liftable, and an OpenVessel. The domain theory also
defines each of these three attributes in terms of more primitive attributes, tenni-
nating in the primitive, operational attributes that describe the instances. Note the
domain theory is not perfectly consistent with the training examples. For example,
the domain theory fails to classify the second and third training examples as pos-
itive examples. Nevertheless, the domain theory forms a useful approximation to
the target concept. KBANN uses the domain theory and training examples together
to learn the target concept more accurately than it could from either alone.

In the first stage of the KBANN algorithm (steps 1-3 in the algorithm), an
initial network is constructed that is consistent with the domain theory. For exam-
ple, the network constructed from the Cup domain theory is shown in Figure 12.2.
In general the network is constructed by creating a sigmoid threshold unit for each
Horn clause in the domain theory. KBANN follows the convention that a sigmoid
output value greater than 0.5 is interpreted as True and a value below 0.5 as False.
Each unit is therefore constructed so that its output will be greater than 0.5 just
in those cases where the corresponding Horn clause applies. For each antecedent
to the Horn clause, an input is created to the corresponding sigmoid unit. The
weights of the sigmoid unit are then set so that it computes the logical AND of
its inputs. In particular, for each input corresponding to a non-negated antecedent,

CHAPTER 12 COMBINING INDUCTIVE AND ANALYTICAL LEARNING 343

Expensive
RottomlsFlat

Madeofceramic
Madeofstyrofoam

MadeOfPaper
HasHandle

HandleOnTop
Handleonside

Light
Hasconcavity

ConcavityPointsUp
Fragile

Stable

Lifable

FIGURE 12.2
A neural network equivalent to the domain theory. This network, created in the first stage of the
KBANN algorithm, produces output classifications identical to those of the given domain theory
clauses. Dark lines indicate connections with weight W and correspond to antecedents of clauses
from the domain theory. Light lines indicate connections with weights of approximately zero.

the weight is set to some positive constant W. For each input corresponding to a
negated antecedent, the weight is set to - W. The threshold weight of the unit, wo
is then set to -(n- .5) W, where n is the number of non-negated antecedents. When
unit input values are 1 or 0, this assures that their weighted sum plus wo will be
positive (and the sigmoid output will therefore be greater than 0.5) if and only if
all clause antecedents are satisfied. Note for sigmoid units at the second and sub-
sequent layers, unit inputs will not necessarily be 1 and 0 and the above argument
may not apply. However, if a sufficiently large value is chosen for W, this KBANN
algorithm can correctly encode the domain theory for arbitrarily deep networks.
Towell and Shavlik (1994) report using W = 4.0 in many of their experiments.

Each sigmoid unit input is connected to the appropriate network input or to
the output of another sigmoid unit, to mirror the graph of dependencies among
the corresponding attributes in the domain theory. As a final step many additional
inputs are added to each threshold unit, with their weights set approximately to
zero. The role of these additional connections is to enable the network to induc-
tively learn additional dependencies beyond those suggested by the given domain
theory. The solid lines in the network of Figure 12.2 indicate unit inputs with
weights of W, whereas the lightly shaded lines indicate connections with initial
weights near zero. It is easy to verify that for sufficiently large values of W this
network will output values identical to the predictions of the domain theory.

The second stage of KBANN (step 4 in the algorithm of Table 12.2) uses
the training examples and the BACWROPAGATION algorithm to refine the initial
network weights. Of course if the domain theory and training examples contain
no errors, the initial network will already fit the training data. In the Cup ex-
ample, however, the domain theory and training data are inconsistent, and this
step therefore alters the initial network weights. The resulting trained network
is summarized in Figure 12.3, with dark solid lines indicating the largest posi-
tive weights, dashed lines indicating the largest negative weights, and light lines

344 MACHINE LEARNING

Expensive a;.- ,,*: ~ .- -...* ". , ,--" .
BottodsFlat ' '*' Stable

MadeOfCeramic
Madeofstyrofoam

MadeOfPaper
HasHandle Lifrable

HandleOnTop
HandleOnSide

Light

\ cup

Open-Vessel HasConcaviiy
ConcavityPointsUp ,i ,,.,,... *.

Fragile " . " " -

Large negative weight
"- " Negligible weight

FIGURE 12.3
Result of inductively refining the initial network. KBANN uses the training examples to modify
the network weights derived from the domain theory. Notice the new dependency of Lifable on
MadeOfStyrofoam and HandleOnTop.

indicating negligible weights. Although the initial network rnisclassifies several
training examples from Table 12.3, the refined network of Figure 12.3 perfectly
classifies all of these training examples.

It is interesting to compare the final, inductively refined network weights to
the initial weights derived from the domain theory. As can be seen in Figure 12.3,
significant new dependencies were discovered during the inductive step, including
the dependency of the Liftable unit on the feature MadeOfStyrofoam. It is impor-
tant to keep in mind that while the unit labeled Liftable was initially defined
by the given Horn clause for Liftable, the subsequent weight changes performed
by BACKPROPAGATION may have dramatically changed,the meaning of this hidden
unit. After training of the network, this unit may take on a very different meaning
unrelated to the initial notion of Liftable.

12.3.3 Remarks
To summarize, KBANN analytically creates a network equivalent to the given
domain theory, then inductively refines this initial hypothesis to better fit the
training data. In doing so, it modifies the network weights as needed to overcome
inconsistencies between the domain theory and observed data.

The chief benefit of KBANN over purely inductive BACKPROPAGATION (be-
ginning with random initial weights) is that it typically generalizes more accurately
than BACKPROPAGATION when given an approximately correct domain theory, es-
pecially when training data is scarce. KBANN and other initialize-the-hypothesis
approaches have been demonstrated to outperform purely inductive systems in
several practical problems. For example, Towel1 et al. (1990) describe the appli-
cation of KBANN to a molecular genetics problem. Here the task was to learn to

CHAPTER 12 COMBINING INDUCTIVE AND ANALYTICAL LEARNING 345

recognize DNA segments called promoter regions, which influence gene activity.
In this experiment KBANN was given an initial domain theory obtained from a
molecular geneticist, and a set of 53 positive and 53 negative training examples
of promoter regions. Performance was evaluated using a leave-one-out strategy
in which the system was run 106 different times. On each iteration KBANN was
trained using 105 of the 106 examples and tested on the remaining example. The
results of these 106 experiments were accumulated to provide an estimate of the
true error rate. KBANN obtained an error rate of 41106, compared to an error rate
of 81106 using standard BACKPROPAGATION. A variant of the KBANN approach was
applied by Fu (1993), who reports an error rate of 21106 on the same data. Thus,
the impact of prior knowledge in these experiments was to reduce significantly
the error rate. The training data for this experiment is available at World Wide
Web site http:llwww.ics.uci.edu/~mlearn/MLRepository.html.

Both Fu (1993) and Towel1 et al. (1990) report that Horn clauses extracted
from the final trained network provided a refined domain theory that better fit
the observed data. Although it is sometimes possible to map from the learned
network weights back to a refined set of Horn clauses, in the general case this
is problematic because some weight settings have no direct Horn clause analog.
Craven and Shavlik (1994) and Craven (1996) describe alternative methods for
extracting symbolic rules from learned networks.

To understand the significance of KBANN it is useful to consider how its
hypothesis search differs from that of the purely inductive BACKPROPAGATION al-
gorithm. The hypothesis space search conducted by both algorithms is depicted
schematically in Figure 12.4. As shown there, the key difference is the initial
hypothesis from which weight tuning is performed. In the case that multiple hy-
potheses (weight vectors) can be found that fit the data-a condition that will be
especially likely when training data is scarce-KBANN is likely to converge to a
hypothesis that generalizes beyond the data in a way that is more similar to the
domain theory predictions. On the other hand, the particular hypothesis to which
BACKPROPAGATION converges will more likely be a hypothesis with small weights,
corresponding roughly to a generalization bias of smoothly interpolating between
training examples. In brief, KBANN uses a domain-specific theory to bias gen-
eralization, whereas BACKPROPAGATION uses a domain-independent syntactic bias
toward small weight values. Note in this summary we have ignored the effect of
local minima on the search.

Limitations of KBANN include the fact that it can accommodate only propo-
sitional domain theories; that is, collections of variable-free Horn clauses. It is also
possible for KBANN to be misled when given highly inaccurate domain theories,
so that its generalization accuracy can deteriorate below the level of BACKPROPA-
GATION. Nevertheless, it and related algorithms have been shown to be useful for
several practical problems.

KBANN illustrates the initialize-the-hypothesis approach to combining ana-
lytical and inductive learning. Other examples of this approach include Fu (1993);
Gallant (1988); Bradshaw et al. (1989); Yang and Bhargava (1990); Lacher et al.
(1991). These approaches vary in the exact technique for constructing the initial

Hypothesis Space

Hypotheses that
fit training data
equally well

Initial hypothesis
for KBANN \

i -Initial hypothesis
for BACKPROPAGATIOI\~

FIGURE 12.4
Hypothesis space search in KBANN. KBANN initializes the network to fit the domain theory, whereas
BACKPROPAGATION initializes the network to small random weights. Both then refine the weights
iteratively using the same gradient descent rule. When multiple hypotheses can be found that fit the
training data (shaded region), KBANN and BACKPROPAGATION are likely to find different hypotheses
due to their different starting points.

network, the application of BACKPROPAGATION to weight tuning, and in methods for
extracting symbolic descriptions from the refined network. Pratt (1993a, 1993b)
describes an initialize-the-hypothesis approach in which the prior knowledge is
provided by a previously learned neural network for a related task, rather than
a manually provided symbolic domain theory. Methods for training the values
of Bayesian belief networks, as discussed in Section 6.11, can also be viewed
as using prior knowledge to initialize the hypothesis.. Here the prior knowledge
corresponds to a set of conditional independence assumptions that determine the
graph structure of the Bayes net, whose conditional probability tables are then
induced from the training data.

12.4 USING PRIOR KNOWLEDGE TO ALTER THE SEARCH
OBJECTIVE
The above approach begins the gradient descent search with a hypothesis that
perfectly fits the domain theory, then perturbs this hypothesis as needed to maxi-
mize the fit to the training data. An alternative way of using prior knowledge is
to incorporate it into the error criterion minimized by gradient descent, so that the
network must fit a combined function of the training data and domain theory. In
this section, we consider using prior knowledge in this fashion. In particular, we
consider prior knowledge in the form of known derivatives of the target function.
Certain types of prior knowledge can be expressed quite naturally in this form.
For example, in training a neural network to recognize handwritten characters we

CHAF'TER 12 COMBINING INDUCTIVE AND ANALYTICAL LEARNiNG 347

can specify certain derivatives of the target function in order to express our prior
knowledge that "the identity of the character is independent of small translations
and rotations of the image."

Below we describe the TANGENTPROP algorithm, which trains a neural net-
work to fit both training values and training derivatives. Section 12.4.4 then de-
scribes how these training derivatives can be obtained from a domain theory
similar to the one used in the Cup example of Section 12.3. In particular, it
discusses how the EBNN algorithm constructs explanations of individual train-
ing examples in order to extract training derivatives for use by TANGENTPROP.
TANGENTPROP and EBNN have been demonstrated to outperform purely inductive
methods in a variety of domains, including character and object recognition, and
robot perception and control tasks.

12.4.1 The TANGENTPROP Algorithm
TANGENTPROP (Simard et al. 1992) accommodates domain knowledge expressed
as derivatives of the target function with respect to transformations of its inputs.
Consider a learning task involving an instance space X and target function f . Up
to now we have assumed that each training example consists of a pair (xi, f (xi))
that describes some instance xi and its training value f (xi). The TANGENTPROP
algorithm assumes various training derivatives of the target function are also
provided. For example, if each instance xi is described by a single real value,
then each training example may be of the form (xi, f (xi), q lx,). Here lx,
denotes the derivative of the target function f with respect to x, evaluated at the
point x = xi.

To develop an intuition for the benefits of providing training derivatives as
well as training values during learning, consider the simple learning task depicted
in Figure 12.5. The task is to learn the target function f shown in the leftmost plot
of the figure, based on the three training examples shown: (xl, f (xl)), (x2, f (x2)),
and (xg, f (xg)). Given these three training examples, the BACKPROPAGATION algo-
rithm can be expected to hypothesize a smooth function, such as the function g
depicted in the middle plot of the figure. The rightmost plot shows the effect of

FIGURE 12.5
Fitting values and derivatives with TANGENTPROP. Let f be the target function for which three ex-
amples (XI, f (xi)), (x2, f (x2)), and (x3, f (x3)) are known. Based on these points the learner might
generate the hypothesis g. If the derivatives are also known, the learner can generalize more accu-
rately h.

providing training derivatives, or slopes, as additional information for each train-
ing example (e.g., (XI, f (XI), I,,)). By fitting both the training values f (xi)
and these training derivatives P I , , the learner has a better chance to correctly
generalize from the sparse training data. To summarize, the impact of including
the training derivatives is to override the usual syntactic inductive bias of BACK-
PROPAGATION that favors a smooth interpolation between points, replacing it by
explicit input information about required derivatives. The resulting hypothesis h
shown in the rightmost plot of the figure provides a much more accurate estimate
of the true target function f .

In the above example, we considered only simple kinds of derivatives of
the target function. In fact, TANGENTPROP can accept training derivatives with
respect to various transformations of the input x. Consider, for example, the task
of learning to recognize handwritten characters. In particular, assume the input
x corresponds to an image containing a single handwritten character, and the
task is to correctly classify the character. In this task, we might be interested in
informing the learner that "the target function is invariant to small rotations of
the character within the image." In order to express this prior knowledge to the
learner, we first define a transformation s(a, x), which rotates the image x by a!

degrees. Now we can express our assertion about rotational invariance by stating
that for each training instance xi, the derivative of the target function with respect
to this transformation is zero (i.e., that rotating the input image does not alter the
value of the target function). In other words, we can assert the following training
derivative for every training instance xi

af ($(a, xi)) = o
aa

where f is the target function and s(a, xi) is the image resulting from applying
the transformation s to the image xi.

How are such training derivatives used by TANGENTPROP to constrain the
weights of the neural network? In TANGENTPROP these training derivatives are
incorporated into the error function that is minimized by gradient descent. Recall
from Chapter 4 that the BACKPROPAGATION algorithm performs gradient descent to
attempt to minimize the sum of squared errors

where xi denotes the ith training instance, f denotes the true target function, and
f denotes the function represented by the learned neural network.

In TANGENTPROP an additional term is added to the error function to penal-
ize discrepancies between the trainin4 derivatives and the actual derivatives of
the learned neural network function f . In general, TANGENTPROP accepts multi-
ple transformations (e.g., we might wish to assert both rotational invariance and
translational invariance of the character identity). Each transformation must be
of the form sj(a, x) where a! is a continuous parameter, where sj is differen-
tiable, and where sj(O, x) = x (e.g., for rotation of zero degrees the transforma-
tion is the identity function). For each such transformation, sj(a!, x), TANGENT-

CHAPTER 12 COMBINING INDUCTIVE AND ANALYTICAL LEARNING 349

PROP considers the squared error between the specified training derivative and
the actual derivative of the learned neural network. The modified error func-
tion is

where p is a constant provided by the user to determine the relative importance
of fitting training values versus fitting training derivatives. Notice the first term
in this definition of E is the original squared error of the network versus training
values, and the second term is the squared error in the network versus training
derivatives.

Simard et al. (1992) give the gradient descent rule for minimizing this ex-
tended error function E. It can be derived in a fashion analogous to the derivation
given in Chapter 4 for the simpler BACKPROPAGATION rule.

12.4.2 An Illustrative Example
Simard et al. (1992) present results comparing the generalization accuracy of TAN-
GENTPROP and purely inductive BACKPROPAGATION for the problem of recognizing
handwritten characters. More specifically, the task in this case is to label images
containing a single digit between 0 and 9. In one experiment, both TANGENT-
PROP and BACKPROPAGATION were trained using training sets of varying size, then
evaluated based on their performance over a separate test set of 160 examples.
The prior knowledge given to TANGENTPROP was the fact that the classification
of the digit is invariant of vertical and horizontal translation of the image (i.e.,
that the derivative of the target function was 0 with respect to these transforma-
tions). The results, shown in Table 12.4, demonstrate the ability of TANGENTPROP
using this prior knowledge to generalize more accurately than purely inductive
BACKPROPAGATION.

Training
set size

10
20
40
80

160
320

Percent error on test set
TANGENTPROP I BACKPROPAGATION

TABLE 12.4
Generalization accuracy for TANGENTPROP and BACKPROPAGATION, for handwritten digit recognition.
TANGENTPROP generalizes more accurately due to its prior knowledge that the identity of the digit
is invariant of translation. These results are from Sirnard et al. (1992).

12.4.3 Remarks
To summarize, TANGENTPROP uses prior knowledge in the form of desired deriva-
tives of the target function with respect to transformations of its inputs. It combines
this prior knowledge with observed training data, by minimizing an objective func-
tion that measures both the network's error with respect to the training example
values (fitting the data) and its error with respect to the desired derivatives (fitting
the prior knowledge). The value of p determines the degree to which the network
will fit one or the other of these two components in the total error. The behavior
of the algorithm is sensitive to p, which must be chosen by the designer.

Although TANGENTPROP succeeds in combining prior knowledge with train-
ing data to guide learning of neural networks, it is not robust to errors in the prior
knowledge. Consider what will happen when prior knowledge is incorrect, that
is, when the training derivatives input to the learner do not correctly reflect the
derivatives of the true target function. In this case the algorithm will attempt to fit
incorrect derivatives. It may therefore generalize less accurately than if it ignored
this prior knowledge altogether and used the purely inductive BACKPROPAGATION
algorithm. If we knew in advance the degree of error in the training derivatives,
we might use this information to select the constant p that determines the relative
importance of fitting training values and fitting training derivatives. However, this
information is unlikely to be known in advance. In the next section we discuss
the EBNN algorithm, which automatically selects values for p on an example-by-
example basis in order to address the possibility of incorrect prior knowledge.

It is interesting to compare the search through hypothesis space (weight
space) performed by TANGENTPROP, KBANN, and BACKPROPAGATION. TANGENT-
PROP incorporates prior knowledge to influence the hypothesis search by altering
the objective function to be minimized by gradient descent. This corresponds to
altering the goal of the hypothesis space search, as illustrated in Figure 12.6. Like
BACKPROPAGATION (but unlike KBANN), TANGENTPROP begins the search with an
initial network of small random weights. However, the gradient descent training
rule produces different weight updates than BACKPROPAGATION, resulting in a dif-
ferent final hypothesis. As shown in the figure, the set of hypotheses that minimizes
the TANGENTPROP objective may differ from the set that minimizes the BACKPROP-
AGATION objective. Importantly, if the training examples and prior knowledge are
both correct, and the target function can be accurately represented by the ANN,
then the set of weight vectors that satisfy the TANGENTPROP objective will be a
subset of those satisfying the weaker BACKPROPAGATION objective. The difference
between these two sets of final hypotheses is the set of incorrect hypotheses that
will be considered by BACKPROPAGATION, but ruled out by TANGENTPROP due to
its prior knowledge.

Note one alternative to fitting the training derivatives of the target function
is to simply synthesize additional training examples near the observed training
examples, using the known training derivatives to estimate training values for
these nearby instances. For example, one could take a training image in the above
character recognition task, translate it a small amount, and assert that the trans-

Hypothesis Space

Hypotheses that Hypotheses that
maximize fit to maximizefit to data
data and prior
knowledge

TANGENTPROP
Search BACKPROPAGATION

Search

FIGURE 12.6
Hypothesis space search in TANGENTPROP. TANGENTPROP initializes the network to small random
weights, just as in BACKPROPAGATION. However, it uses a different error function to drive the gradient
descent search. The error used by TANGENTPROP includes both the error in predicting training values
and in predicting the training derivatives provided as prior knowledge.

lated image belonged to the same class as the original example. We might expect
that fitting these synthesized examples using BACKPROPAGATION would produce
results similar to fitting the original training examples and derivatives using TAN-
GENTPROP. Simard et al. (1992) report experiments showing similar generalization
error in the two cases, but report that TANGENTPROP converges considerably more
efficiently. It is interesting to note that the ALVINN system, which learns to steer
an autonomous vehicle (see Chapter 4), uses a very similar approach to synthesize
additional training examples. It uses prior knowledge of how the desired steer-
ing direction changes with horizontal translation of the camera image to create
multiple synthetic training examples to augment each observed training example.

12.4.4 The EBNN Algorithm
The EBNN (Explanation-Based Neural Network learning) algorithm (Mitchell and
Thrun 1993a; Thrun 1996) builds on the TANGENTPROP algorithm in two significant
ways. First, instead of relying on the user to provide training derivatives, EBNN
computes training derivatives itself for each observed training example. These
training derivatives are calculated by explaining each training example in terms
of a given domain theory, then extracting training derivatives from this explana-
tion. Second, EBNN addresses the issue of how to weight the relative importance
of the inductive and analytical components of learning (i.e., how to select the
parameter p in Equation [12.1]). The value of p is chosen independently for each
training example, based on a heuristic that considers how accurately the domain
theory predicts the training value for this particular example. Thus, the analytical
component of learning is emphasized for those training examples that are correctly

explained by the domain theory and de-emphasized for training examples that are
poorly explained.

The inputs to EBNN include (1) a set of training examples of the form
(xi, f (xi)) with no training derivatives provided, and (2) a domain theory analo-
gous to that used in explanation-based learning (Chapter 11) and in KBANN, but
represented by a set of previously trained neural networks rather than a set of
Horn clauses. The output of EBNN is a new neural network that approximates the
target function f . This learned network is trained to fit both the training examples
(xi, f (xi)) and training derivatives of f extracted from the domain theory. Fitting
the training examples (xi, f (xi)) constitutes the inductive component of learning,
whereas fitting the training derivatives extracted from the domain theory provides
the analytical component.

To illustrate the type of domain theory used by EBNN, consider Figure 12.7.
The top portion of this figure depicts an EBNN domain theory for the target func-
tion Cup, with each rectangular block representing a distinct neural network in the
domain theory. Notice in this example there is one network for each of the Horn
clauses in the symbolic domain theory of Table 12.3. For example, the network
labeled Graspable takes as input the description of an instance and produces as
output a value indicating whether the object is graspable (EBNN typically repre-
sents true propositions by the value 0.8 and false propositions by the value 0.2).
This network is analogous to the Horn clause for Graspable given in Table 12.3.
Some networks take the outputs of other networks as their inputs (e.g., the right-
most network labeled Cup takes its inputs from the outputs of the Stable, Lifable,
and OpenVessel networks). Thus, the networks that make up the domain theory
can be chained together to infer the target function value for the input instance,
just as Horn clauses might be chained together for this purpose. In general, these
domain theory networks may be provided to the learner by some external source,
or they may be the result of previous learning by the same system. EBNN makes
use of these domain theory networks to learn the new,target function. It does not
alter the domain theory networks during this process.

The goal of EBNN is to learn a new neural network to describe the target
function. We will refer to this new network as the target network. In the example of
Figure 12.7, the target network Cup,,,,,, shown at the bottom of the figure takes
as input the description of an arbitrary instance and outputs a value indicating
whether the object is a Cup.

EBNN learns the target network by invoking the TANGENTPROP algorithm
described in the previous section. Recall that TANGENTPROP trains a network to fit
both training values and training derivatives. EBNN passes along to TANGENTPROP
the training values (xi, f (xi)) that it receives as input. In addition, EBNN provides
TANGENTPROP with derivatives that it calculates from the domain theory. To see
how EBNN calculates these training derivatives, consider again Figure 12.7. The
top portion of this figure shows the domain theory prediction of the target function
value for a particular training instance, xi. EBNN calculates the derivative of this
prediction with respect to each feature of the input instance. For the example in the
figure, the instance xi is described by features such as MadeOf Styrof oam = 0.2

CHAFER 12 COMBINING INDUCTIVE AND ANALYTICAL LEARNING 353

Explanation of
training example
in terms of
domain theory:

BonomlsFku = T -
ConcavilyPoinrsUp = T-

Expensive = T-
Fragile = T -

HandIeOnTop = F -
HandleOdide = T -
HasConcovity = T -

HosHandle = T -
Light =T-

M&ofcemic = T-
MadeOfPoper = F -

Modeofstyrofoam = F 7-

Target network: B O ~ O ~ I S F I U ~

ConcaviryPointsUp
Expensive

Fmgile
HandIeOnTop
HandleOnSide
HosConcavity CUP

HasHandle
Light

Madeofceramic
Madeofpaper

Madeofstyrofoarn

Training
derivatives

FIGURE 12.7
Explanation of a training example in EBNN. The explanation consists of a prediction of the target
function value by the domain theory networks (top). Training derivatives are extracted from this
explanation in order to train the separate target network (bottom). Each rectangular block represents
a distinct multilayer neural network.

(i.e., False), and the domain theory prediction is that Cup = 0.8 (i.e., True).
EBNN calculates the partial derivative of this prediction with respect to each
instance feature, yielding the set of derivatives

acup acup
aBottomIsFlat ' aConcavityPointsUp " " aMadeOf acup Styrof oam 1

This set of derivatives is the gradient of the domain theory prediction function with
respect to the input instance. The subscript refers to the fact that these derivatives

354 MACHINE LEARNING

hold when x = xi. In the more general case where the target function has multiple
output units, the gradient is computed for each of these outputs. This matrix of
gradients is called the Jacobian of the target function.

To see the importance of these training derivatives in helping to learn the
target network, consider the derivative , E ~ ~ ~ i , , e . If the domain theory encodes
the knowledge that the feature Expensive is irrelevant to the target function Cup,
then the derivative , E ~ ~ e ~ i , , e extracted from the explanation will have the value
zero. A derivative of zero corresponds to the assertion that a change in the fea-
ture Expensive will have no impact on the predicted value of Cup. On the other
hand, a large positive or negative derivative corresponds to the assertion that the
feature is highly relevant to determining the target value. Thus, the derivatives
extracted from the domain theory explanation provide important information for
distinguishing relevant from irrelevant features. When these extracted derivatives
are provided as training derivatives to TANGENTPROP for learning the target net-
work Cup,,,,,,, they provide a useful bias for guiding generalization. The usual
syntactic inductive bias of neural network learning is replaced in this case by the
bias exerted by the derivatives obtained from the domain theory.

Above we described how the domain theory prediction can be used to gen-
erate a set of training derivatives. To be more precise, the full EBNN algorithm
is as follows. Given the training examples and domain theory, EBNN first cre-
ates a new, fully connected feedforward network to represent the target function.
This target network is initialized with small random weights, just as in BACK-
PROPAGATION. Next, for each training example (xi, f (xi)) EBNN determines the
corresponding training derivatives in a two-step process. First, it uses the domain
theory to predict the value of the target function for instance xi. Let A(xi) de-
note this domain theory prediction for instance xi. In other words, A(xi) is the
function defined by the composition of the domain theory networks forming the
explanation for xi. Second, the weights and activations of the domain theory net-
works are analyzed to extract the derivatives of A(xi) 'with respect to each of the
components of xi (i.e., the Jacobian of A(x) evaluated at x = xi). Extracting these
derivatives follows a process very similar to calculating the 6 terms in the BACK-
PROPAGATION algorithm (see Exercise 12.5). Finally, EBNN uses a minor variant
of the TANGENTPROP algorithm to train the target network to fit the following error
function

where

Here xi denotes the ith training instance and A(x) denotes the domain theory
prediction for input x. The superscript notation x j denotes the jth component of
the vector x (i.e., the jth input node of the neural network). The coefficient c is
a normalizing constant whose value is chosen to assure that for all i, 0 5 pi 5 1.

CHAPTER 12 C O M B m G INDUCTIVE AND ANALYTICAL LEARNING 355

Although the notation here appears a bit tedious, the idea is simple. The
error given by Equation (12.2) has the same general form as the error function
in Equation (12.1) minimized by TANGENTPROP. The leftmost term measures the
usual sum of squared errors between the training value f (xi) and the value pre-
dicted by the target network f"(xi). The rightmost term measures the squared error
between the training derivatives extracted from the domain theory and the
actual derivatives of the target network e. Thus, the leftmost term contributes
the inductive constraint that the hypothesis must fit the observed training data,
whereas the rightmost term contributes the analytical constraint that it must fit
the training derivatives extracted from the domain theory. Notice the derivative

in Equation (12.2) is just a special case of the expression af(sfz") of Equa-
tion (12.1), for which sj(a, xi) is the transformation that replaces x! by x/ + a.
The precise weight-training rule used by EBNN is described by Thrun (1996).

The relative importance of the inductive and analytical learning components
is determined in EBNN by the constant pi, defined in Equation (12.3). The value
of pi is determined by the discrepancy between the domain theory prediction
A(xi) and the training value f (xi). The analytical component of learning is thus
weighted more heavily for training examples that are correctly predicted by the
domain theory and is suppressed for examples that are not correctly predicted.
This weighting heuristic assumes that the training derivatives extracted from the
domain theory are more likely to be correct in cases where the training value is
correctly predicted by the domain theory. Although one can construct situations
in which this heuristic fails, in practice it has been found effective in several
domains (e.g., see Mitchell and Thrun [1993a]; Thrun [1996]).

12.4.5 Remarks
To summarize, the EBNN algorithm uses a domain theory expressed as a set of
previously learned neural networks, together with a set of training examples, to
train its output hypothesis (the target network). For each training example EBNN
uses its domain theory to explain the example, then extracts training derivatives
from this explanation. For each attribute of the instance, a training derivative is
computed that describes how the target function value is influenced by a small
change to this attribute value, according to the domain theory. These training
derivatives are provided to a variant of TANGENTPROP, which fits the target network
to these derivatives and to the training example values. Fitting the derivatives
constrains the learned network to fit dependencies given by the domain theory,
while fitting the training values constrains it to fit the observed data itself. The
weight pi placed on fitting the derivatives is determined independently for each
training example, based on how accurately the domain theory predicts the training
value for this example.

EBNN has been shown to be an effective method for learning from ap-
proximate domain theories in several domains. Thrun (1996) describes its ap-
plication to a variant of the Cup learning task discussed above and reports that

EBNN generalizes more accurately than standard BACKPROPAGATION, especially
when training data is scarce. For example, after 30 training examples, EBNN
achieved a root-mean-squared error of 5.5 on a separate set of test data, compared
to an error of 12.0 for BACKPROPAGATION. Mitchell and Thrun (1993a) describe
applying EBNN to learning to control a simulated mobile robot, in which the do-
main theory consists of neural networks that predict the effects of various robot
actions on the world state. Again, EBNN using an approximate, previously learned
domain theory, outperformed BACKPROPAGATION. Here BACKPROPAGATION required
approximately 90 training episodes to reach the level of performance achieved
by EBNN after 25 training episodes. O'Sullivan et al. (1997) and Thrun (1996)
describe several other applications of EBNN to real-world robot perception and
control tasks, in which the domain theory consists of networks that predict the
effect of actions for an indoor mobile robot using sonar, vision, and laser range
sensors.

EBNN bears an interesting relation to other explanation-based learning meth-
ods, such as PROLOG-EBG described in Chapter 11. Recall from that chapter that
PROLOG-EBG also constructs explanations (predictions of example target values)
based on a domain theory. In PROLOG-EBG the explanation is constructed from a
domain theory consisting of Horn clauses, and the target hypothesis is refined by
calculating the weakest conditions under which this explanation holds. Relevant
dependencies in the explanation are thus captured in the learned Horn clause hy-
pothesis. EBNN constructs an analogous explanation, but it is based on a domain
theory consisting of neural networks rather than Horn clauses. As in PROLOG-EBG,
relevant dependencies are then extracted from the explanation and used to refine
the target hypothesis. In the case of EBNN, these dependencies take the form
of derivatives because derivatives are the natural way to represent dependencies
in continuous functions such as neural networks. In contrast, the natural way to
represent dependencies in symbolic explanations or logical proofs is to describe
the set of examples to which the proof applies.

There are several differences in capabilities between EBNN and the sym-
bolic explanation-based methods of Chapter 11. The main difference is that EBNN
accommodates imperfect domain theories, whereas PROLOG-EBG does not. This
difference follows from the fact that EBNN is built on the inductive mechanism
of fitting the observed training values and uses the domain theory only as an addi-
tional constraint on the learned hypothesis. A second important difference follows
from the fact that PROLOG-EBG learns a growing set of Horn clauses, whereas
EBNN learns a fixed-size neural network. As discussed in Chapter 11, one diffi-
culty in learning sets of Horn clauses is that the cost of classifying a new instance
grows as learning proceeds and new Horn clauses are added. This problem is
avoided in EBNN because the fixed-size target network requires constant time to
classify new instances. However, the fixed-size neural network suffers the cor-
responding disadvantage that it may be unable to represent sufficiently complex
functions, whereas a growing set of Horn clauses can represent increasingly com-
plex functions. Mitchell and Thrun (1993b) provide a more detailed discussion of
the relationship between EBNN and symbolic explanation-based learning methods.

CHAPTER 12 COMBINING INDUCTIVE AND ANALYTICAL LEARNING 357

12.5 USING PRIOR KNOWLEDGE TO AUGMENT SEARCH
OPERATORS
The two previous sections examined two different roles for prior knowledge in
learning: initializing the learner's hypothesis and altering the objective function
that guides search through the hypothesis space. In this section we consider a
third way of using prior knowledge to alter the hypothesis space search: using
it to alter the set of operators that define legal steps in the search through the
hypothesis space. This approach is followed by systems such as FOCL (Pazzani
et al. 1991; Pazzani and Kibler 1992) and ML-SMART (Bergadano and Giordana
1990). Here we use FOCL to illustrate the approach.

12.5.1 The FOCL Algorithm
FOCL is an extension of the purely inductive FOIL system described in Chap-
ter 10. Both FOIL and FOCL learn a set of first-order Horn clauses to cover the
observed training examples. Both systems employ a sequential covering algorithm
that learns a single Horn clause, removes the positive examples covered by this
new Horn clause, and then iterates this procedure over the remaining training
examples. In both systems, each new Horn clause is created by performing a
general-to-specific search, beginning with the most general possible Horn clause
(i.e., a clause containing no preconditions). Several candidate specializations of
the current clause are then generated, and the specialization with greatest infor-
mation gain relative to the training examples is chosen. This process is iterated,
generating further candidate specializations and selecting the best, until a Horn
clause with satisfactory performance is obtained.

The difference between FOIL and FOCL lies in the way in which candidate
specializations are generated during the general-to-specific search for a single Horn
clause. As described in Chapter 10, FOIL generates each candidate specialization
by adding a single new literal to the clause preconditions. FOCL uses this same
method for producing candidate specializations, but also generates additional spe-
cializations based on the domain theory. The solid edges in the search tree of Fig-
ure 12.8 show the general-to-specific search steps considered in a typical search by
FOIL. The dashed edge in the search tree of Figure 12.8 denotes an additional can-
didate specialization that is considered by FOCL and based on the domain theory.

Although FOCL and FOIL both learn first-order Horn clauses, we illustrate
their operation here using the simpler domain of propositional (variable-free) Horn
clauses. In particular, consider again the Cup target concept, training examples,
and domain theory from Figure 12.3. To describe the operation of FOCL, we must
first draw a distinction between two kinds of literals that appear in the domain
theory and hypothesis representation. We will say a literal is operational if it is
allowed to be used in describing an output hypothesis. For example, in the Cup
example of Figure 12.3 we allow output hypotheses to refer only to the 12 at-
tributes that describe the training examples (e.g., HasHandle, HandleOnTop).
Literals based on these 12 attributes are thus considered operational. In contrast,
literals that occur only as intermediate features in the domain theory, but not as

Cup C

[2+,3-I I(i \
Cup C Fragile ...

Cup C BottamlsFlal,
I2++l Light,

HmConcnvity,
ConcavifyPointsUp

[4+.2-I

Cup C

HasConcavity,
ConcavityPointsUp
HandleOnTop
[0+,2-I

Cup C BonomlsFlat,
Light,
HasConcaviry,
ConcavifyPoinfsUp,
1 ~ a n d l e o n ~ o ~

W+&I

Cup C BottomlsFlof,
Light,
HasConcavity,

FIGURE 12.8
Hypothesis space search in FOCL. To learn a single rule, FOCL searches from general to increasingly
specific hypotheses. Two kinds of operators generate specializations of the current hypothesis. One
kind adds a single new literal (solid lines.in the figure). A second kind of operator specializes the
rule by adding a set of literals that constitute logically sufficient conditions for the target concept,
according to the domain theory (dashed lines in the figure). FOCL selects among all these candidate
specializations, based on their performance over the data. Therefore, imperfect domain theories will
impact the hypothesis only if the evidence supports the theory. This example is based on the same
training data and domain theory as the earlier KBANN example.

primitive attributes of the instances, are considered nonoperational. An example
of a nonoperational attribute in this case is the attribute Stable.

At each point in its general-to-specific search, FOCL expands its current
hypothesis h using the following two operators: ,

1. For each operational literal that is not part of h, create a specialization of h
by adding this single literal to the preconditio s. This is also the method used
by FOIL to generate candidate successors. he solid arrows in Figure 12.8
denote this type of specialization.

P

CHAPTER 12 COMBINING INDUCTIVE AND ANALYTICAL LEARNING 359

2. Create an operational, logically sufficient condition for the target concept
according to the domain theory. Add this set of literals to the current precon-
ditions of h. Finally, prune the preconditions of h by removing any literals
that are unnecessary according to the training data. The dashed arrow in
Figure 12.8 denotes this type of specialization.

The detailed procedure for the second operator above is as follows. FOCL
first selects one of the domain theory clauses whose head (postcondition) matches
the target concept. If there are several such clauses, it selects the clause whose
body (preconditions) have the highest information gain relative to the training
examples of the target concept. For example, in the domain theory and training
data of Figure 12.3, there is only one such clause:

Cup t Stable, Lifable, Openvessel

The preconditions of the selected clause form a logically sufficient condition for
the target concept. Each nonoperational literal in these sufficient conditions is
now replaced, again using the domain theory and substituting clause precondi-
tions for clause postconditions. For example, the domain theory clause Stable t
BottomIsFlat is used to substitute the operational BottomIsFlat for the unopera-
tional Stable. This process of "unfolding" the domain theory continues until the
sufficient conditions have been restated in terms of operational literals. If there
are several alternative domain theory clauses that produce different results, then
the one with the greatest information gain is greedily selected at each step of
the unfolding process. The reader can verify that the final operational sufficient
condition given the data and domain theory in the current example is

BottomIsFlat , HasHandle, Light, HasConcavity , ConcavityPointsUp

As a final step in generating the candidate specialization, this sufficient condition is
pruned. For each literal in the expression, the literal is removed unless its removal
reduces classification accuracy over the training examples. This step is included
to recover from overspecialization in case the imperfect domain theory includes
irrelevant literals. In our current example, the above set of literals matches two
positive and two negative examples. Pruning (removing) the literal HasHandle re-
sults in improved performance. The final pruned, operational, sufficient conditions
are, therefore,

BottomZsFlat , Light, HasConcavity , ConcavityPointsUp

This set of literals is now added to the preconditions of the current hypothesis.
Note this hypothesis is the result of the search step shown by the dashed arrow
in Figure 12.8.

Once candidate specializations of the current hypothesis have been gener-
ated, using both of the two operations above, the candidate with highest informa-
tion gain is selected. In the example shown in Figure 12.8 the candidate chosen
at the first level in the search tree is the one generated by the domain theory. The
search then proceeds by considering further specializations of the theory-suggested

preconditions, thereby allowing the inductive component of learning to refine the
preconditions derived from the domain theory. In this example, the domain theory
affects the search only at the first search level. However, this will not always be
the case. Should the empirical support be stronger for some other candidate at the
first level, theory-suggested literals may still be added at subsequent steps in the
search. To summarize, FOCL learns Horn clauses of the form

where c is the target concept, oi is an initial conjunction of operational literals
added one at a time by the first syntactic operator, ob is a conjunction of oper-
ational literals added in a single step based on the domain theory, and of is a
final conjunction of operational literals added one at a time by the first syntactic
operator. Any of these three sets of literals may be empty.

The above discussion illustrates the use of a propositional domain theory
to create candidate specializations of the hypothesis during the general-to-specific
search for a single Horn clause. The algorithm is easily extended to first-order
representations (i.e., representations including variables). Chapter 10 discusses in
detail the algorithm used by FOIL to generate first-order Horn clauses, including
the extension of the first of the two search operators described above to first-order
representations. To extend the second operator to accommodate first-order domain
theories, variable substitutions must be considered when unfolding the domain
theory. This can be accomplished using a procedure related to the regression
procedure described in Table 1 1.3.

12.5.2 Remarks
FOCL uses the domain theory to increase the number of candidate specializations
considered at each step of the search for a single Horn clause. Figure 12.9 com-
pares the hypothesis space search performed by FOCL to that performed by the
purely inductive FOIL algorithm on which it is based. FOCL's theory-suggested
specializations correspond to "macro" steps in FOIL'S search, in which several
literals are added in a single step. This process can be viewed as promoting a
hypothesis that might be considered later in the search to one that will be con-
sidered immediately. If the domain theory is correct, the training data will bear
out the superiority of this candidate over the others and it will be selected. If the
domain theory is incorrect, the empirical evaluation of all the candidates should
direct the search down an alternative path.

To summarize, FOCL uses both a syntactic generation of candidate special-
izations and a domain theory driven generation of candidate specializations at each
step in the search. The algorithm chooses among these candidates based solely on
their empirical support over the training data. Thus, the domain theory is used in
a fashion that biases the learner, but leaves final search choices to be made based
on performance over the training data. The bias introduced by the domain theory
is a preference in favor of Horn clauses most similar to operational, logically
sufficient conditions entailed by the domain theory. This bias is combined with

Hypothesis Space
1

Hypotheses thatfit
training data
equally well

FIGURE 12.9
Hypothesis space search in FOCL. FOCL augments the set of search operators used by FOIL. Whereas
FOIL considers adding a single new literal at each step, FOIL also considers adding multiple literals
derived from the domain theory.

the bias of the purely inductive FOIL program, which is a preference for shorter
hypotheses.

FOCL has been shown to generalize more accurately than the purely induc-
tive FOIL algorithm in a number of application domains in which an imperfect do-
main theory is available. For example, Pazzani and Kibler (1992) explore learning
the concept "legal chessboard positions." Given 60 training examples describing
30 legal and 30 illegal endgame board positions, FOIL achieved an accuracy of
86% over an independent set of test examples. FOCL was given the same 60 train-
ing examples, along with an approximate domain theory with an accuracy of 76%.
FOCL produced a hypothesis with generalization accuracy of 94%-less than half
the error rate of FOIL. Similar results have been obtained in other domains. For
example, given 500 training examples of telephone network problems and their
diagnoses from the telephone company NYNEX, FOIL achieved an accuracy of
90%, whereas FOCL reached an accuracy of 98% when given the same training
data along with a 95% accurate domain theory.

12.6 STATE OF THE ART
The methods presented in this chapter are only a sample of the possible approaches
to combining analytical and inductive learning. While each of these methods has
been demonstrated to outperform purely inductive learning methods in selected
domains, none of these has been thoroughly tested or proven across a large variety
of problem domains. The topic of combining inductive and analytical learning
remains a very active research area.

12.7 SUMMARY AND FURTHER READING
The main points of this chapter include:

0 Approximate prior knowledge, or domain theories, are available in many
practical learning problems. Purely inductive methods such as decision tree
induction and neural network BACKPROPAGATION fail to utilize such domain
theories, and therefore perform poorly when data is scarce. Purely analyti-
cal learning methods such as PROLOG-EBG utilize such domain theories, but
produce incorrect hypotheses when given imperfect prior knowledge. Meth-
ods that blend inductive and analytical learning can gain the benefits of both
approaches: reduced sample complexity and the ability to overrule incorrect
prior knowledge.
One way to view algorithms for combining inductive and analytical learning
is to consider how the domain theory affects the hypothesis space search.
In this chapter we examined methods that use imperfect domain theories to
(1) create the initial hypothesis in the search, (2) expand the set of search
operators that generate revisions to the current hypothesis, and (3) alter the
objective of the search.
A system that uses the domain theory to initialize the hypothesis is KBANN.
This algorithm uses a domain theory encoded as propositional rules to ana-
lytically construct an artificial neural network that is equivalent to the domain
theory. This network is then inductively refined using the BACKPROPAGATION
algorithm, to improve its performance over the training data. The result is
a network biased by the original domain theory, whose weights are refined
inductively based on the training data.
TANGENTPROP uses prior knowledge represented by desired derivatives of
the target function. In some domains, such as image processing, this is
a natural way to express prior knowledge. TANGENTPROP incorporates this
knowledge by altering the objective function minimized by gradient descent
search through the space of possible hypotheses.
EBNN uses the domain theory to alter the objective in searching the hy-
pothesis space of possible weights for an artificial neural network. It uses
a domain theory consisting of previously learned neural networks to per-
form a neural network analog to symbolic explanation-based learning. As in
symbolic explanation-based learning, the domain theory is used to explain
individual examples, yielding information about the relevance of different
example features. With this neural network representation, however, infor-
mation about relevance is expressed in the form of derivatives of the target
function value with respect to instance features. The network hypothesis is
trained using a variant of the TANGENTPROP algorithm, in which the error to
be minimized includes both the error in network output values and the error
in network derivatives obtained from explanations.
FOCL uses the domain theory to expand the set of candidates considered at
each step in the search. It uses an approximate domain theory represented

by first order Horn clauses to learn a set of Horn clauses that approximate
the target function. FOCL employs a sequential covering algorithm, learning
each Horn clause by a general-to-specific search. The domain theory is used
to augment the set of next more specific candidate hypotheses considered
at each step of this search. Candidate hypotheses are then evaluated based
on their performance over the training data. In this way, FOCL combines
the greedy, general-to-specific inductive search strategy of FOIL with the
rule-chaining, analytical reasoning of analytical methods.

0 The question of how to best blend prior knowledge with new observations
remains one of the key open questions in machine learning.

There are many more examples of algorithms that attempt to combine induc-
tive and analytical learning. For example, methods for learning Bayesian belief
networks discussed in Chapter 6 provide one alternative to the approaches dis-
cussed here. The references at the end of this chapter provide additional examples
and sources for further reading.

EXERCISES
12.1. Consider learning the target concept GoodCreditRisk defined over instances de-

scribed by the four attributes HasStudentLoan, HasSavingsAccount, Isstudent,
OwnsCar. Give the initial network created by KBANN for the following domain
theory, including all network connections and weights.

GoodCreditRisk t Employed, LowDebt
Employed t -1sStudent

LowDebt t -HasStudentLoan, HasSavingsAccount

12.2. KBANN converts a set of propositional Horn clauses into an initial neural network.
Consider the class of n-of-m clauses, which are Horn clauses containing m literals
in the preconditions (antecedents), and an associated parameter n where n m.
The preconditions of an n-of-m Horn clause are considered to be satisfied if at least
n of its m preconditions are satisfied. For example, the clause

Student t LiveslnDorm, Young, Studies; n = 2

asserts that one is a Student if at least two of these three preconditions are satisfied.
Give an algorithm similar to that used by KBANN, that accepts a set of

propositional n-of-m clauses and constructs a neural network consistent with the
domain theory.

12.3. Consider extending KBANN to accept a domain theory consisting of first-order
rather than propositional Horn clauses (i.e., Horn clauses containing variables, as in
Chapter 10). Either give an algorithm for constructing a neural network equivalent
to a set of Horn clauses, or discuss the difficulties that prevent this.

12.4. This exercise asks you to derive a gradient descent rule analogous to that used by
TANGENTPROP. Consider the instance space X consisting of the real numbers, and
consider the hypothesis space H consisting of quadratic functions of x. That is,

each hypothesis h(x) is of the form

(a) Derive a gradient descent rule that minimizes the same criterion as BACKPROP-
AGATION; that is, the sum of squared errors between the hypothesis and target
values of the training data.

(b) Derive a second gradient descent rule that minimizes the same criterion as
TANGENTPROP. Consider only the single transformation s (a , x) = x + a.

12.5. EBNN extracts training derivatives from explanations by examining the weights
and activations of the neural networks that make up the explanation. Consider the
simple example in which the explanation is formed by a single sigmoid unit with
n inputs. Derive a procedure for extracting the derivative 91,=,~ where xi is a
particular training instance input to the unit, f (x) is the sigmoid unit output, and
xi denotes the jth input to the sigmoid unit. You may wish to use the notation x!
to refer to the jth component of xi . Hint: The derivation is similar to the derivation
of the BACKPROPAGATION training rule.

12.6. Consider again the search trace of FOCL shown in Figure 12.8. Suppose that the
hypothesis selected at the first level in the search is changed to

Cup t -.HasHandle

Describe the second-level candidate hypotheses that will be generated by FOCL as
successors to this hypothesis. You need only include those hypotheses generated
by FOCL's second search operator, which uses its domain theory. Don't forget to
post-prune the sufficient conditions. Use the training data from Table 12.3.

12.7. This chapter discussed three approaches to using prior knowledge to impact the
search through the space of possible hypotheses. Discuss your ideas for how these
three approaches could be integrated. Can you propose a specific algorithm that
integrates at least two of these three for some specific hypothesis representation?
What advantages and disadvantages would you anticipate from this integration?

12.8. Consider again the question from Section 12.2.1, regarding what criterion to use
for choosing among hypotheses when both data and prior knowledge are available.
Give your own viewpoint on this issue.

REFERENCES
Abu-Mostafa, Y. S. (1989). Learning from hints in neural networks. Journal of Complexity, 6(2),

192-198.
Bergadano, F., & Giordana, A. (1990). Guiding induction with domain theories. In R. Michalski et

al. (Eds.), Machine learning: An art$cial intelligence approach 3 (pp. 474-492). San Mateo,
CA: Morgan Kaufmann.

Bradshaw, G., Fozzard, R., & Cice, L. (1989). A connectionist expert system that really works. In
Advances in neural information processing. San Mateo, CA: Morgan Kaufmam.

Caruana, R. (1996). Algorithms and applications for multitask learning. Proceedings of the 13th
International Conference on Machine Learning. San Francisco: Morgan Kaufmann.

Cooper, G. C., & Herskovits, E. (1992). A Bayesian method for the induction of probabilistic networks
from data. Machine Learning, 9, 309-347.

Craven, M. W. (1996). Extracting comprehensible modelsfrom trained neural networks (PhD thesis)
(UW Technical Report CS-TR-96-1326). Department of Computer Sciences, University of
Wisconsin-Madison.

Craven, M. W., & Shavlik, J. W. (1994). Using sampling and queries to extract rules from trained
neural networks. Proceedings of the 11th International Conference on Machine Learning (pp.
3745). San Mateo, CA: Morgan Kaufmann.

Fu, L. M. (1989). Integration of neural heuristics into knowledge-based inference. Connection Science,
1(3), 325-339.

Fu, L. M. (1993). Knowledge-based connectionism for revising domain theories. IEEE Transactions
on Systems, Man, and Cybernetics, 23(1), 173-182.

Gallant, S. I. (1988). Connectionist expert systems. CACM, 31(2), 152-169.
Koppel, M., Feldman, R., & Segre, A. (1994). Bias-driven revision of logical domain theories. Journal

of Artificial Intelligence, 1, 159-208. http:llwww.cs.washington.edulresearch/jairhome.html.
Lacher, R., Hmska, S., & Kuncicky, D. (1991). Backpropagation learning in expert networks (Dept.

of Computer Science Technical Report TR91-015). Florida State University, Tallahassee.
Mach, R., & Shavlik, J. (1993). Using knowledge-based neural networks to improve algorithms:

Refining the Chou-Fasman algorithm for protein folding. Machine Learning, 11(3), 195-215.
Mitchell, T. M., & Thrun, S. B. (1993a). Explanation-based neural network learning for robot control.

In S. Hanson, J. Cowan, & C. Giles (Eds.), Advances in neural infomtionprocessing systems
5 (pp. 287-294). San Mateo, CA: Morgan-Kaufmann Press.

Mitchell, T. M., & Thrun, S. B. (1993b). Explanation-based learning: A comparison of symbolic and
neural network approaches. Tenth International Conference on Machine Learning, Amherst,
MA.

Mooney, R. (1993). Induction over the unexplained: Using overly-general domain theories to aid
concept learning. Machine Learning, lO(1).

O'Sullivan, J., Mitchell, T., & Thrun, S. (1997). Explanation-based learning for mobile robot per-
ception. In K. Ikeuchi & M. Veloso (Eds.), Symbolic Visual Learning (pp. 295-324).

Ourston, D., & Mooney, R. J. (1994). Theory refinement combining analytical and empirical methods.
Arti2cial Intelligence, 66(2).

Pazzani, M. J., & Brunk, C. (1993). Finding accurate frontiers: A knowledge-intensive approach to
relational learning. Proceedings of the I993 National Conference on Artificial Intelligence (pp.
328-334). AAAI Press.

Pazzani, M. J., Brunk, C. A., & Silverstein, G. (1991). A knowledge-intensive approach to learning
relational concepts. Proceedings of the Eighth International Workshop on Machine Learning
(pp. 432436). San Mateo, CA: Morgan Kaufmann.

Pazzani, M. J., & Kibler, D. (1992). The utility of knowledge in inductive learning. MachineLearning,
9(1), 57-94.

Pratt, L. Y. (1993a). Transferring previously learned BACKPROPAGATION neural networks to new
learning tasks (Ph.D. thesis). Department of Computer Science, Rutgers University, New
Jersey. (Also Rutgers Computer Science Technical Report ML-TR-37.)

Pratt, L. Y. (1993b). Discriminability-based transfer among neural networks. In J. E. Moody et
al. (Eds.), Advances in Nerual Infomtion Processing Systems 5 . San Mateo, CA: Morgan
Kaufmann.

Rosenbloom, P. S., & Aasman, J. (1990). Knowledge level and inductive uses of chunking (ebl).
Proceedings of the Eighth National Conference on Artificial Intelligence (pp. 821-827). AAAI
Press.

Russell, S., Binder, J., Koller, D., & Kanazawa, K. (1995). Local learning in probabilistic networks
with hidden variables. Proceedings of the 14th International Joint Conference on Artificial
Intelligence, Montreal. Morgan Kaufmann.

Shavlik, J., & Towell, G. (1989). An approach to combining explanation-based and neural learning
algorithms. Connection Science, 1(3), 233-255.

Simard, P. S., Victoni, B., LeCun, Y., & Denker, J. (1992). Tangent prop-A formalism for specifying
selected invariances in an adaptive network. In J. Moody et al. (Eds.), Advances in Neural
Inforination Processing System 4. San Mateo, CA: Morgan Kaufmann.

Sudharth, S. C., & Holden, A. D. C. (1991). Symbolic-neural systems and the use of hints for
developing complex systems. International Journal of Man-Machine Studies, 35(3), 291-3 11.

Thrun, S. (1996). Explanation based neural network learning: A lifelong learning approach. Boston:
Kluwer Academic Publishers.

Thrun, S., & Mitchell, T. M. (1993). Integrating inductive neural network learning and explanation-
based learning. Proceedings of the 1993 International Joint Conference on Artificial Intelli-
gence.

Thrun, S., & Mitchell, T. M. (1995). Learning one more thing. Proceedings of the 1995 International
Joint Conference on Artificial Intelligence, Montreal.

Towell, G., & Shavlik, J. (1989). An approach to combining explanation-based and neural learning
algorithms. Connection Science, (I), 233-255.

Towell, G., & Shavlik, J. (1994). Knowledge-based artificial neural networks. Artificial Intelligence,
70(1-2), 119-165.

Towell, G., Shavlik, J., & Noordewier, M. (1990). Refinement of approximate domain theories by
knowledge-based neural networks. Proceedings of the Eighth National Conference on Artijcial
Intelligence (pp. 861-866). Cambridge, MA: AAAI, MIT Press.

Yang, Q., & Bhargava, V. (1990). Building expert systems by a modified perceptron network with
rule-transfer algorithms (pp. 77-82). International Joint Conference on Neural Networks, IEEE.

CHAPTER

REINFORCEMENT
LEARNING

Reinforcement learning addresses the question of how an autonomous agent that
senses and acts in its environment can learn to choose optimal actions to achieve its
goals. This very generic problem covers tasks such as learning to control a mobile
robot, learning to optimize operations in factories, and learning to play board games.
Each time the agent performs an action in its environment, a trainer may provide a
reward or penalty to indicate the desirability of the resulting state. For example, when
training an agent to play a game the trainer might provide a positive reward when the
game is won, negative reward when it is lost, and zero reward in all other states. The
task of the agent is to learn from this indirect, delayed reward, to choose sequences
of actions that produce the greatest cumulative reward. This chapter focuses on
an algorithm called Q learning that can acquire optimal control strategies from
delayed rewards, even when the agent has no prior knowledge of the effects of
its actions on the environment. Reinforcement learning algorithms are related to
dynamic programming algorithms frequently used to solve optimization problems.

13.1 INTRODUCTION
Consider building a learning robot. The robot, or agent, has a set of sensors to
observe the state of its environment, and a set of actions it can perform to alter
this state. For example, a mobile robot may have sensors such as a camera and
sonars, and actions such as "move forward" and "turn." Its task is to learn a control
strategy, or policy, for choosing actions that achieve its goals. For example, the
robot may have a goal of docking onto its battery charger whenever its battery
level is low.

This chapter is concerned with how such agents can learn successful control
policies by experimenting in their environment. We assume that the goals of the
agent can be defined by a reward function that assigns a numerical value-an
immediate payoff-to each distinct action the agent may take from each distinct
state. For example, the goal of docking to the battery charger can be captured by
assigning a positive reward (e.g., +loo) to state-action transitions that immediately
result in a connection to the charger and a reward of zero to every other state-action
transition. This reward function may be built into the robot, or known only to an
external teacher who provides the reward value for each action performed by the
robot. The task of the robot is to perform sequences of actions, observe their conse-
quences, and learn a control policy. The control policy we desire is one that, from
any initial state, chooses actions that maximize the reward accumulated over time
by the agent. This general setting for robot learning is summarized in Figure 13.1.

As is apparent from Figure 13.1, the problem of learning a control policy to
maximize cumulative reward is very general and covers many problems beyond
robot learning tasks. In general the problem is one of learning to control sequential
processes. This includes, for example, manufacturing optimization problems in
which a sequence of manufacturing actions must be chosen, and the reward to
be maximized is the value of the goods produced minus the costs involved. It
includes sequential scheduling problems such as choosing which taxis to send
for passengers in a large city, where the reward to be maximized is a function
of the wait time of the passengers and the total fuel costs of the taxi fleet. In
general, we are interested in any type of agent that must learn to choose actions
that alter the state of its environment and where a cumulative reward function
is used to define the quality of any given action sequence. Within this class of
problems we will consider specific settings, including settings in which the actions
have deterministic or nondeterministic outcomes, and settings in which the agent

Agent

I Environment I

Goal: Learn to choose actions that maximize

r +yr +y2r + ... , where 0 gy<l
0 1 2

FIGURE 13.1
An agent interacting with its environment.
The agent exists in an environment described
by some set of possible states S. It can
perform any of a set of possible actions
A. Each time it performs an action a, in
some state st the agent receives a real-valued
reward r, that indicates the immediate value
of this state-action transition. This produces
a sequence of states si, actions ai, and
immediate rewards ri as shown in the figure.
The agent's task is to learn a control policy,
n : S + A, that maximizes the expected
sum of these rewards, with future rewards
discounted exponentially by their delay.

has or does not have prior knowledge about the effects of its actions on the
environment.

Note we have touched on the problem of learning to control sequential
processes earlier in this book. In Section 11.4 we discussed explanation-based
learning of rules to control search during problem solving. There the problem is
for the agent to choose among alternative actions at each step in its search for some
goal state. The techniques discussed here differ from those of Section 11.4, in that
here we consider problems where the actions may have nondeterministic outcomes
and where the learner lacks a domain theory that describes the outcomes of its
actions. In Chapter 1 we discussed the problem of learning to choose actions while
playing the game of checkers. There we sketched the design of a learning method
very similar to those discussed in this chapter. In fact, one highly successful
application of the reinforcement learning algorithms of this chapter is to a similar
game-playing problem. Tesauro (1995) describes the TD-GAMMON program, which
has used reinforcement learning to become a world-class backgammon player. This
program, after training on 1.5 million self-generated games, is now considered
nearly equal to the best human players in the world and has played competitively
against top-ranked players in international backgammon tournaments.

The problem of learning a control policy to choose actions is similar in some
respects to the function approximation problems discussed in other chapters. The
target function to be learned in this case is a control policy, n : S + A, that
outputs an appropriate action a from the set A, given the current state s from the
set S . However, this reinforcement learning problem differs from other function
approximation tasks in several important respects.

0 Delayed reward. The task of the agent is to learn a target function n that
maps from the current state s to the optimal action a = n(s). In earlier
chapters we have always assumed that when learning some target function
such as n, each training example would be a pair of the form (s , n(s)) . In
reinforcement learning, however, training information is not available in this
form. Instead, the trainer provides only a sequence of immediate reward val-
ues as the agent executes its sequence of actions. The agent, therefore, faces
the problem of temporal credit assignment: determining which of the actions
in its sequence are to be credited with producing the eventual rewards.

0 Exploration. In reinforcement learning, the agent influences the distribution
of training examples by the action sequence it chooses. This raises the ques-
tion of which experimentation strategy produces most effective learning. The
learner faces a tradeoff in choosing whether to favor exploration of unknown
states and actions (to gather new information), or exploitation of states and
actions that it has already learned will yield high reward (to maximize its
cumulative reward).

0 Partially observable states. Although it is convenient to assume that the
agent's sensors can perceive the entire state of the environment at each time
step, in many practical situations sensors provide only partial information.
For example, a robot with a forward-pointing camera cannot see what is

behind it. In such cases, it may be necessary for the agent to consider its
previous observations together with its current sensor data when choosing
actions, and the best policy may be one that chooses actions specifically to
improve the observability of the environment.
Life-long learning. Unlike isolated function approximation tasks, robot learn-
ing often requires that the robot learn several related tasks within the same
environment, using the same sensors. For example, a mobile robot may need
to learn how to dock on its battery charger, how to navigate through nar-
row corridors, and how to pick up output from laser printers. This setting
raises the possibility of using previously obtained experience or knowledge
to reduce sample complexity when learning new tasks.

13.2 THE LEARNING TASK
In this section we formulate the problem of learning sequential control strategies
more precisely. Note there are many ways to do so. For example, we might assume
the agent's actions are deterministic or that they are nondeterministic. We might
assume that the agent can predict the next state that will result from each action, or
that it cannot. We might assume that the agent is trained by an expert who shows
it examples of optimal action sequences, or that it must train itself by performing
actions of its own choice. Here we define one quite general formulation of the
problem, based on Markov decision processes. This formulation of the problem
follows the problem illustrated in Figure 13.1.

In a Markov decision process (MDP) the agent can perceive a set S of distinct
states of its environment and has a set A of actions that it can perform. At each
discrete time step t , the agent senses the current state st , chooses a current action
a,, and performs it. The environment responds by giving the agent a reward r, =
r (s t , a,) and by producing the succeeding state s,+l = 6(s,, a ,) . Here the functions
6 and r are part of the environment and are not necessarily known to the agent.
In an MDP, the functions 6(st, a,) and r(s, , a ,) depend only on the current state
and action, and not on earlier states or actions. In this chapter we consider only
the case in which S and A are finite. In general, 6 and r may be nondeterministic
functions, but we begin by considering only the deterministic case.

The task of the agent is to learn a policy, n : S + A, for selecting its next
action a, based on the current observed state st ; that is, n(s,) = a,. How shall we
specify precisely which policy n we would like the agent to learn? One obvious
approach is to require the policy that produces the greatest possible cumulative
reward for the robot over time. To state this requirement more precisely, we define
the cumulative value Vn(s,) achieved by following an arbitrary policy n from an
arbitrary initial state st as follows:

CHAPTER 13 REINFORCEMENT LEARNING 371

where the sequence of rewards rt+i is generated by beginning at state s, and by
repeatedly using the policy n to select actions as described above (i.e., a, = n(st),
a,+l = n (~ , + ~) , etc.). Here 0 5 y < 1 is a constant that determines the relative
value of delayed versus immediate rewards. In particular, rewards received i time
steps into the future are discounted exponentially by a factor of y '. Note if we set
y = 0, only the immediate reward is considered. As we set y closer to 1, future
rewards are given greater emphasis relative to the immediate reward.

The quantity VX(s) defined by Equation (13.1) is often called the discounted
cumulative reward achieved by policy n from initial state s. It is reasonable to
discount future rewards relative to immediate rewards because, in many cases,
we prefer to obtain the reward sooner rather than later. However, other defini-
tions of total reward have also been explored. For example, jinite horizon reward, c:=, rt+i, considers the undiscounted sum of rewards over a finite number h of . -
steps. Another possibility is average reward, limb,, c F = ~ rt+i, which consid-
ers the average reward per time step over the entire lifetime of the agent. In
this chapter we restrict ourselves to considering discounted reward as defined
by Equation (13.1). Mahadevan (1996) provides a discussion of reinforcement
learning when the criterion to be optimized is average reward.

We are now in a position to state precisely the agent's learning task. We
require that the agent learn a policy n that maximizes V"(s) for all states s.
We will call such a policy an optimal policy and denote it by T*.

n* r argmax V" (s), (Vs)
X

To simplify notation, we will refer to the value function v"*(s) of such an optimal
policy as V*(s). V*(s) gives the maximum discounted cumulative reward that the
agent can obtain starting from state s; that is, the discounted cumulative reward
obtained by following the optimal policy beginning at state s.

To illustrate these concepts, a simple grid-world environment is depicted
in the topmost diagram of Figure 13.2. The six grid squares in this diagram
represent six possible states, or locations, for the agent. Each arrow in the diagram
represents a possible action the agent can take to move from one state to another.
The number associated with each arrow represents the immediate reward r(s, a)
the agent receives if it executes the corresponding state-action transition. Note
the immediate reward in this particular environment is defined to be zero for
all state-action transitions except for those leading into the state labeled G. It is
convenient to think of the state G as the goal state, because the only way the agent
can receive reward, in this case, is by entering this state. Note in this particular
environment, the only action available to the agent once it enters the state G is
to remain in this state. For this reason, we call G an absorbing state.

Once the states, actions, and immediate rewards are defined, and once we
choose a value for the discount factor y, we can determine the optimal policy n *
and its value function V*(s). In this case, let us choose y = 0.9. The diagram
at the bottom of the figure shows one optimal policy for this setting (there are
others as well). Like any policy, this policy specifies exactly one action that the

r (s, a) (immediate reward) values

Q(s, a) values V*(s) values

One optimal policy

FIGURE 13.2
A simple deterministic world to illustrate the basic concepts of Q-learning. Each grid square represents
a distinct state, each arrow a distinct action. The immediate reward function, r (s , a) gives reward 100
for actions entering the goal state G, and zero otherwise. Values of V*(s) and Q(s, a) follow from
r (s , a), and the discount factor y = 0.9. An optimal policy, corresponding to actions with maximal
Q values, is also shown.

agent will select in any given state. Not surprisingly, the optimal policy directs
the agent along the shortest path toward the state G.

The diagram at the right of Figure 13.2 shows the values of V* for each
state. For example, consider the bottom right state in this diagram. The value of
V* for this state is 100 because the optimal policy in this state selects the "move
up" action that receives immediate reward 100. Thereafter, the agent will remain
in the absorbing state and receive no further rewards. Similarly, the value of V*
for the bottom center state is 90. This is because the optimal policy will move
the agent from this state to the right (generating an immediate reward of zero),
then upward (generating an immediate reward of 100). Thus, the discounted future
reward from the bottom center state is

o + y 1 0 0 + y 2 0 + Y 3 0 + . . . = 9 0

CHAPTER 13 REINFORCEMENT LEARNING 373

Recall that V* is defined to be the sum of discounted future rewards over the
infinite future. In this particular environment, once the agent reaches the absorbing
state G its infinite future will consist of remaining in this state and receiving
rewards of zero.

13.3 Q LEARNING
How can an agent learn an optimal policy n* for an arbitrary environment? It is
difficult to learn the function rt* : S + A directly, because the available training
data does not provide training examples of the form (s , a) . Instead, the only
training information available to the learner is the sequence of immediate rewards
r(si, ai) for i = 0, 1,2, As we shall see, given this kind of training information
it is easier to learn a numerical evaluation function defined over states and actions,
then implement the optimal policy in terms of this evaluation function.

What evaluation function should the agent attempt to learn? One obvious
choice is V*. The agent should prefer state sl over state s2 whenever V*(s l) >
V*(s2), because the cumulative future reward will be greater from sl. Of course
the agent's policy must choose among actions, not among states. However, it can
use V* in certain settings to choose among actions as well. The optimal action
in state s is the action a that maximizes the sum of the immediate reward r(s , a)
plus the value V* of the immediate successor state, discounted by y.

n*(s) = argmax[r(s, a) f y V*(G(s, a))]
a

(recall that 6(s, a) denotes the state resulting from applying action a to state s.)
Thus, the agent can acquire the optimal policy by learning V* , provided it has
perfect knowledge of the immediate reward function r and the state transition
function 6. When the agent knows the functions r and 6 used by the environment
to respond to its actions, it can then use Equation (13.3) to calculate the optimal
action for any state s.

Unfortunately, learning V* is a useful way to learn the optimal policy only
when the agent has perfect knowledge of 6 and r. This requires that it be able to
perfectly predict the immediate result (i.e., the immediate reward and immediate
successor) for every possible state-action transition. This assumption is compara-
ble to the assumption of a perfect domain theory in explanation-based learning,
discussed in Chapter 11. In many practical problems, such as robot control, it
is impossible for the agent or its human programmer to predict in advance the
exact outcome of applying an arbitrary action to an arbitrary state. Imagine, for
example, the difficulty in describing 6 for a robot arm shoveling dirt when the
resulting state includes the positions of the dirt particles. In cases where either
6 or r is unknown, learning V* is unfortunately of no use for selecting optimal
actions because the agent cannot evaluate Equation (13.3). What evaluation func-
tion should the agent use in this more general setting? The evaluation function Q ,
defined in the following section, provides one answer.

374 MACHINE LEARNING

13.3.1 The Q Function
Let us define the evaluation function Q(s, a) so that its value is the maximum dis-
counted cumulative reward that can be achieved starting from state s and applying
action a as the first action. In other words, the value of Q is the reward received
immediately upon executing action a from state s, plus the value (discounted by
y) of following the optimal policy thereafter.

Q(s , a) - r(s , a) + Y V*(6(s, a)) (1 3.4)
Note that Q(s, a) is exactly the quantity that is maximized in Equation (13.3)
in order to choose the optimal action a in state s. Therefore, we can rewrite
Equation (13.3) in terms of Q(s, a) as

n * (s) = argmax Q (s , a) (13.5)
a

Why is this rewrite important? Because it shows that if the agent learns the Q
function instead of the V* function, it will be able to select optimal actions even
when it has no knowledge of thefunctions r and 6 . As Equation (13.5) makes clear,
it need only consider each available action a in its current state s and choose the
action that maximizes Q(s, a).

It may at first seem surprising that one can choose globally optimal action
sequences by reacting repeatedly to the local values of Q for the current state.
This means the agent can choose the optimal action without ever conducting a
lookahead search to explicitly consider what state results from the action. Part of
the beauty of Q learning is that the evaluation function is defined to have precisely
this property-the value of Q for the current state and action summarizes in a
single number all the information needed to determine the discounted cumulative
reward that will be gained in the future if action a is selected in state s.

To illustrate, Figure 13.2 shows the Q values for every state and action in the
simple grid world. Notice that the Q value for each state-action transition equals
the r value for this transition plus the V* value for the resulting state discounted by
y. Note also that the optimal policy shown in the figure corresponds to selecting
actions with maximal Q values.

13.3.2 An Algorithm for Learning Q
Learning the Q function corresponds to learning the optimal policy. How can Q
be learned?

The key problem is finding a reliable way to estimate training values for
Q, given only a sequence of immediate rewards r spread out over time. This can
be accomplished through iterative approximation. To see how, notice the close
relationship between Q and V*,

V*(S) = max Q(s, a')
a'

which allows rewriting Equation (13.4) as
Q(s, a) = r(s, a) + y max Q (W , a) , a')

a'

CHAPTER 13 REINFORCEMENT LEARNJNG 375

This recursive definition of Q provides the basis for algorithms that iter-
atively approximate Q (Watkins 1989). To describe the algorithm, we will use
the symbol Q to refer to the learner's estimate, or hypothesis, of the actual Q
function. In this algorithm the learner represents its hypothesis Q by a large table
with a separate entry for each state-action pair. The table entry for the pair (s, a)
stores the value for ~ (s , a)-the learner's current hypothesis about the actual
but unknown value Q(s, a). The table can be initially filled with random values
(though it is easier to understand the algorithm if one assumes initial values of
zero). The agent repeatedly observes its current state s, chooses some action a,
executes this action, then observes the resulting reward r = r(s, a) and the new
state s' = 6(s, a). It then updates the table entry for ~ (s , a) following each such
transition, according to the rule:

Q(S, a) t r + y max &(st, a')
a'

(13.7)

Note this training rule uses the agent's current Q values for the new state
s' to refine its estimate of ~ (s , a) for the previous state s. This training rule
is motivated by Equation (13.6), although the training rule concerns the agent's
approximation Q, whereas Equation (13.6) applies to the actual Q function. Note
although Equation (13.6) describes Q in terms of the functions 6(s, a) and r(s, a),
the agent does not need to know these general functions to apply the training
rule of Equation (13.7). Instead it executes the action in its environment and
then observes the resulting new state s' and reward r. Thus, it can be viewed as
sampling these functions at the current values of s and a .

The above Q learning algorithm for deterministic Markov decision processes
is described more precisely in Table 13.1. Using this algorithm the agent's estimate
Q converges in the limit to the actual Q function, provided the system can be
modeled as a deterministic Markov decision process, the reward function r is

Q learning algorithm
For each s , a initialize the table entry ~ (s , a) to zero.
Observe the current state s
Do forever:

Select an action a and execute it
Receive immediate reward r
Observe the new state s'
Update the table entry for ~ (s , a) as follows:

~ (s , a) c r + ymax&(s',af)
a'

S C S '

TABLE 13.1
Q learning algorithm, assuming deterministic rewards and actions. The discount factor y may be any
constant such that 0 5 y < 1.

bounded, and actions are chosen so that every state-action pair is visited infinitely
often.

13.3.3 An Illustrative Example
To illustrate the operation of the Q learning algorithm, consider a single action
taken by an agent, and the corresponding refinement to Q shown in Figure 13.3.
In this example, the agent moves one cell to the right in its grid world and receives
an immediate reward of zero for this transition. It then applies the training rule
of Equation (13.7) to refine its estimate Q for the state-action transition it just
executed. According to the training rule, the new Q estimate for this transition
is the sum of the received reward (zero) and the highest Q value associated with
the resulting state (loo), discounted by y (.9).

Each time the agent moves forward from an old state to a new one, Q
learning propagates Q estimates backward from the new state to the old. At the
same time, the immediate reward received by the agent for the transition is used
to augment these propagated values of Q.

Consider applying this algorithm to the grid world and reward function
shown in Figure 13.2, for which the reward is zero everywhere, except when
entering the goal state. Since this world contains an absorbing goal state, we will
assume that training consists of a series of episodes. During each episode, the
agent begins at some randomly chosen state and is allowed to execute actions
until it reaches the absorbing goal state. When it does, the episode ends and

Initial state: S] Next state: S2

FIGURE 13.3
The update to Q after executing a single ̂action. The diagram on the left shows the initial state
s! of the robot (R) and several relevant Q values in its initial hypothesis. For example, the value
Q(s1, aright) = 72.9, where aright refers to the action that moves R to its right. When the robot
executes the action aright , it receives immediate reward r = 0 and transitions to state s2. It then
updates its estimate i)(sl, aright) based on its Q estimates for the new state s2. Here y = 0.9.

CHAPTER 13 REINFORCEMENT LEARNING 377

the agent is transported to a new, randomly chosen, initial state for the next
episode.

How will the values of Q evolve as the Q learning algorithm is applied in
this case? With all the Q values initialized to zero, the agent will make no changes
to any Q table entry until it happens to reach the goal state and receive a nonzero
reward. This will result in refining the Q value for the single transition leading
into the goal state. On the next episode, if the agent passes through this state
adjacent to the goal state, its nonzero Q value will allow refining the value for
some transition two steps from the goal, and so on. Given a sufficient number of
training episodes, the information will propagate from the transitions with nonzero
reward back through the entire state-action space available to the agent, resulting
eventually in a Q table containing the Q values shown in Figure 13.2.

In the next section we prove that under certain assumptions the Q learning
algorithm of Table 13.1 will converge to the correct Q function. First consider
two general properties of this Q learning algorithm that hold for any deterministic
MDP in which the rewards are non-negative, assuming we initialize all Q values to
zero. The first property is that under these conditions the Q values never decrease
during training. More formally, let Q,(s, a) denote the learned ~ (s , a) value after
the nth iteration of the training procedure (i.e., after the nth state-action transition
taken by the agent). Then

A second general property that holds under these same conditions is that through-
out the training process every Q value wi:l remain in the interval between zero
and its true Q value.

13.3.4 Convergence
Will the algorithm of Table 13.1 converge toward a Q equal to the true Q function?
The answer is yes, under certain conditions. First, we must assume the system is
a deterministic MDP. Second, we must assume the immediate reward values are
bounded; that is, there exists some positive constant c such that for all states s
and actions a , Ir(s, a)l < c. Third, we assume the agent selects actions in such
a fashion that it visits every possible state-action pair infinitely often. By this
third condition we mean that if action a is a legal action from state s, then over
time the agent must execute action a from state s repeatedly and with nonzero
frequency as the length of its action sequence approaches infinity. Note these
conditions are in some ways quite general and in others fairly restrictive. They
describe a more general setting than illustrated by the example in the previous
section, because they allow for environments with arbitrary positive or negative
rewards, and for environments where any number of state-action transitions may
produce nonzero rewards. The conditions are also restrictive in that they require
the agent to visit every distinct state-action transition infinitely often. This is a
very strong assumption in large (or continuous!) domains. We will discuss stronger

convergence results later. However, the result described in this section provides
the basic intuition for understanding why Q learning works.

The key idea underlying the proof of convergence is that the table entry
~ (s , a) with the largest error must have its error reduced by a factor of y whenever
it is updated. The reason is that its new value depends only in part on error-prone
Q estimates, with the remainder depending on the error-free observed immediate
reward r.

Theorem 13.1. Convergence of Q learning for deterministic Markov decision
processes. Consider a Q learning agent in a deterministic MDP with bounded re-
wards (Vs, a) lr(s, a) [5 c . The* Q learning agent uses the training rule of Equa-
tion (13.7), initializes its table Q(s, a) to arbitrary finite values, and uses a discount
factor y such that 0 y < 1. Let Q,(s, a) denote the agent's hypothesis ~ (s , a)
following the nth update. If each state-action pair is visited infinitely often, then
Q,(s, a) converges to Q(s, a) as n + oo, for all s , a .

Proof. Since each state-action transition occurs infinitely often, consider consecutive
intervals during which each state-action transition occurs at least once. The proof
consists of showing that the maximum error over all entries in the Q table is reduced
by at least a factor of y during each such interval. Q, is the agent's table of estimated
Q values after n updates. Let An be the maximum error in Q,; that is

Below we use s' to denote S(s, a) . Now for any table entry (in@, a) that is updated
on iteration n + 1, the magnitude of the error in the revised estimate Q , + ~ (S , a) is

IQ,+I(S , a) - Q(s, all = I(r + y max Qn(s', a')) - (r + y m?x Q(d , a'))]
a' a

= y I m y Qn(st, a') - m y Q(s1, a') I
a a

5 y max I Qn(s1, a') - ~ (s ' , a') I
a'

5 Y my I Q , (s", a') - Q W , a') I
s , a

I Qn+i (s, a) - Q(s, all 5 Y An

The third line above follows from the second line because for any two functions fi
and f2 the following inequality holds

In going from the third line to the fourth line above, note we introduce a new
variable s" over which the maximization is performed. This is legitimate because
the maximum value will be at least as great when we allow this additional variable
to vary. Note that by introducing this variable we obtain an expression that matches
the definition of A,.

Thus, the updated Q , + ~ (S , a) for any s, a is at most y times the maximum
error in the Q,, table, A,. The largest error in the initial table, Ao, is bounded because
values of ~ ~ (s , a) and Q(s, a) are bounded for all s , a . Now after the first interval

CHAPTER 13 REINFORCEMENT LEARNING 379

during which each s, a is visited, the largest error in the table will be at most yAo.
After k such intervals, the error will be at most ykAo. Since each state is visited
infinitely often, the number of such intervals is infinite, and A, -+ 0 as n + oo.
This proves the theorem. 0

13.3.5 Experimentation Strategies
Notice the algorithm of Table 13.1 does not specify how actions are chosen by the
agent. One obvious strategy would be for the agent in state s to select the action a
that maximizes ~ (s , a), thereby exploiting its current approximation Q. However,
with this strategy the agent runs the risk that it will overcommit to actions that
are found during early training to have high Q values, while failing to explore
other actions that have even higher values. In fact, the convergence theorem above
requires that each state-action transition occur infinitely often. This will clearly
not occur if the agent always selects actions that maximize its current &(s, a). For
this reason, it is common in Q learning to use a probabilistic approach to selecting
actions. Actions with higher Q values are assigned higher probabilities, but every
action is assigned a nonzero probability. One way to assign such probabilities is

where P(ai 1s) is the probability of selecting action ai, given that the agent is in
state s , and where k > 0 is a constant that determines how strongly the selection
favors actions with high Q values. Larger values of k will assign higher proba-
bilities to actions with above average Q, causing the agent to exploit what it has
learned and seek actions it believes will maximize its reward. In contrast, small
values of k will allow higher probabilities for other actions, leading the agent
to explore actions that do not currently have high Q values. In some cases, k is
varied with the number of iterations so that the agent favors exploration during
early stages of learning, then gradually shifts toward a strategy of exploitation.

13.3.6 Updating Sequence
One important implication of the above convergence theorem is that Q learning
need not train on optimal action sequences in order to converge to the optimal
policy. In fact, it can learn the Q function (and hence the optimal policy) while
training from actions chosen completely at random at each step, as long as the
resulting training sequence visits every state-action transition infinitely often. This
fact suggests changing the sequence of training example transitions in order to
improve training efficiency without endangering final convergence. To illustrate,
consider again learning in an MDP with a single absorbing goal state, such as the
one in Figure 13.1. Assume as before that we train the agent with a sequence of
episodes. For each episode, the agent is placed in a random initial state and is
allowed to perform actions and to update its Q table until it reaches the absorbing
goal state. A new training episode is then begun by removing the agent from the

goal state and placing it at a new random initial state. As noted earlier, if we
begin with all Q values initialized to zero, then after the first full episode only
one entry in the agent's Q table will have been changed: the entry corresponding
to the final transition into the goal state. Note that if the agent happens to follow
the same sequence of actions from the same random initial state in its second full
episode, then a second table entry would be made nonzero, and so on. If we run
repeated identical episodes in this fashion, the frontier of nonzero Q values will
creep backward from the goal state at the rate of one new state-action transition
per episode. Now consider training on these same state-action transitions, but in
reverse chronological order for each episode. That is, we apply the same update
rule from Equation (13.7) for each transition considered, but perform these updates
in reverse order. In this case, after the first full episode the agent will have updated
its Q estimate for every transition along the path it took to the goal. This training
process will clearly converge in fewer iterations, although it requires that the agent
use more memory to store the entire episode before beginning the training for that
episode.

A second strategy for improving the rate of convergence is to store past
state-action transitions, along with the immediate reward that was received, and
retrain on them periodically. Although at first it might seem a waste of effort to
retrain on the same transition, recall that the updated ~ (s , a) value is determined
by the values ~ (s ' , a) of the successor state s' = 6(s, a) . Therefore, if subsequent
training changes one of the ~ (s ' , a) values, then retraining on the transition (s , a)
may result in an altered value for ~ (s , a) . In general, the degree to which we wish
to replay old transitions versus obtain new ones from the environment depends
on the relative costs of these two operations in the specific problem domain. For
example, in a robot domain with navigation actions that might take several seconds
to perform, the delay in collecting a new state-action transition from the external
world might be several orders of magnitude more costly than internally replaying
a previously observed transition. This difference can be very significant given that
Q learning can often require thousands of training iterations to converge.

Note throughout the above discussion we have kept our assumption that the
agent does not know the state-transition function 6(s, a) used by the environment
to create the successor state s' = S(s, a) , or the function r(s , a) used to generate
rewards. If it does know these two functions, then many more efficient methods
are possible. For example, if performing external actions is expensive the agent
may simply ignore the environment and instead simulate it internally, efficiently
generating simulated actions and assigning the appropriate simulated rewards.
Sutton (1991) describes the DYNA architecture that performs a number of simulated
actions after each step executed in the external world. Moore and Atkeson (1993)
describe an approach called prioritized sweeping that selects promising states to
update next, focusing on predecessor states when the current state is found to
have a large update. Peng and Williams (1994) describe a similar approach. A
large number of efficient algorithms from the field of dynamic programming can
be applied when the functions 6 and r are known. Kaelbling et al. (1996) survey
a number of these.

CHAPTER 13 REINFORCEMENT LEARNING 381

13.4 NONDETERMINISTIC REWARDS AND ACTIONS
Above we considered Q learning in deterministic environments. Here we consider
the nondeterministic case, in which the reward function r (s , a) and action transi-
tion function 6(s, a) may have probabilistic outcomes. For example, in T e s a u r ~ ' ~
(1995) backgammon playing program, action outcomes are inherently probabilis-
tic because each move involves a roll of the dice. Similarly, in robot problems
with noisy sensors and effectors it is often appropriate to model actions and re-
wards as nondeterministic. In such cases, the functions 6(s, a) and r(s , a) can be
viewed as first producing a probability distribution over outcomes based on s and
a , and then drawing an outcome at random according to this distribution. When
these probability distributions depend solely on s and a (e.g., they do not depend
on previous states or actions), then we call the system a nondeterministic Markov
decision process.

In this section we extend the Q learning algorithm for the deterministic
case to handle nondeterministic MDPs. To accomplish this, we retrace the line
of argument that led to the algorithm for the deterministic case, revising it where
needed.

In the nondeterministic case we must first restate the objective of the learner
to take into account the fact that outcomes of actions are no longer deterministic.
The obvious generalization is to redefine the value V" of a policy n to be the ex-
pected value (over these nondeterministic outcomes) of the discounted cumulative
reward received by applying this policy

where, as before, the sequence of rewards r,+i is generated by following policy
n beginning at state s. Note this is a generalization of Equation (13.1), which
covered the deterministic case.

As before, we define the optimal policy n* to be the policy n that maxi-
mizes V"(s) for all states s. Next we generalize our earlier definition of Q from
Equation (13.4), again by taking its expected value.

where P(slls, a) is the probability that taking action a in state s will produce the
next state s'. Note we have used P(slls, a) here to rewrite the expected value of
V*(6(s, a)) in terms of the probabilities associated with the possible outcomes of
the probabilistic 6.

As before we can re-express Q recursively

Q (s , a) = E[r(s , a)] + y P(sfls, a) m y Q(sl , a') (13.9)
S'

a

which is the generalization of the earlier Equation (13.6). To summarize, we have
simply redefined Q(s, a) in the nondeterministic case to be the expected value of
its previously defined quantity for the deterministic case.

Now that we have generalized the definition of Q to accommodate the non-
deterministic environment functions r and 6, a new training rule is needed. Our
earlier training rule derived for the deterministic case (Equation 13.7) fails to con-
verge in this nondeterministic setting. Consider, for example, a nondeterministic
reward function r(s, a) that produces different rewards each time the transition
(s , a } is repeated. In this case, the training rule will repeatedly alter the values of
Q(S, a) , even if we initialize the Q table values to the correct Q function. In brief,
this training rule does not converge. This difficulty can be overcome by modifying
the training rule so that it takes a decaying weighted average of the current Q
value and the revised estimate. Writing Q, to denote the agent's estimate on the
nth iteration of the algorithm, the following revised training rule is sufficient to
assure convergence of Q to Q:

Q ~ (s , a) -+ (1 - un)Qn-l(s, a) + a,[r + y max Q,-~(S', a')]
at (13.10)

where

a, =
1

1 + visits, (s , a)
where s and a here are the state and action updated during the nth iteration, and
where visits,(s, a) is the total number of times this state-action pair has been
visited up to and including the nth iteration.

The key idea in this revised rule is that revisions to Q are made more
gradually than in the deterministic case. Notice if we were to set a, to 1 in
Equation (13.10) we would have exactly the training rule for the deterministic case.
With smaller values of a , this term is now averaged in with the current ~ (s , a) to
produce the new updated value. Notice that the value of a, in Equation (13.11)
decreases as n increases, so that updates become smaller as training progresses.
By reducing a at an appropriate rate during training, we can achieve convergence
to the correct Q function. The choice of a, given above is one of many that
satisfy the conditions for convergence, according to the following theorem due to
Watkins and Dayan (1992).

Theorem 13.2. Convergence of Q learning for nondeterministic Markov de-
cision processes. Consider a Q learning agent i n a nondeterministic MDP with
bounded rewards (Vs, a)lr(s, a)l 5 c . The Q learning agent uses the training rule of
Equation (13.10), initializes its table ~ (s , a) to arbitrary finite values, and uses a
discount factor y such that 0 5 y < 1. Let n(i, s, a) be the iteration corresponding
to the ith time that action a is applied to state s. If each state-action pair is visited
infinitely often, 0 5 a,, < 1, and

then for all s and a, &,(s, a) + Q(s, a) as n + 00, with probability 1.

While Q learning and related reinforcement learning algorithms can be
proven to converge under certain conditions, in practice systems that use Q learn-
ing often require many thousands of training iterations to converge. For exam-
ple, Tesauro's TD-GAMMON discussed earlier trained for 1.5 million backgammon
games, each of which contained tens of state-action transitions.

13.5 TEMPORAL DIFFERENCE LEARNING
The Q learning algorithm learns by iteratively reducing the discrepancy between
Q value estimates for adjacent state:,. In this sense, Q learning is a special case
of a general class of temporal diflerence algorithms that learn by reducing dis-
crepancies between estimates made by the agent at different times. Whereas the
training rule of Equation (13.10) reduces the difference between the estimated Q
values of a state and its immediate successor, we could just as well design an algo-
rithm that reduces discrepancies between this state and more distant descendants
or ancestors.

To explore this issue further, recall that our Q learning training rule calcu-
lates a training value for &(st, a,) in terms of the values for &(s,+l, at+l) where
s,+l is the result of applying action a, to the state st. Let Q(')(s,, a,) denote the
training value calculated by this one-step lookahead

One alternative way to compute a training value for Q(s,, a,) is to base it on the
observed rewards for two steps

2 st, a,) = rt + yr,+l + y max Q (s ~ + ~ , a)

or, in general, for n steps

Q (~) (s , , ~ ,) = rt + yr,+l + , - . + y(n-l)rt+n-l + ynmax&(s,+,,a)

Sutton (1988) introduces a general method for blending these alternative
training estimates, called TD(h). The idea is to use a constant 0 5 h 5 1 to
combine the estimates obtained from various lookahead distances in the following
fashion

An equivalent recursive definition for Qh is

Note if we choose h = 0 we have our original training estimate Q('), which
considers only one-step discrepancies in the Q estimates. As h is increased, the al-
gorithm places increasing emphasis on discrepancies based on more distant looka-
heads. At the extreme value A. = 1, only the observed r,+i values are considered,

with no contribution from the current Q estimate. Note when Q = Q, the training
values given by Qh will be identical for all values of h such that 0 5 h 5 I .

The motivation for the TD(h) method is that in some settings training will
be more efficient if more distant lookaheads are considered. For example, when
the agent follows an optimal policy for choosing actions, then eh with h = 1 will
provide a perfect estimate for the true Q value, regardless of any inaccuracies in
Q. On the other hand, if action sequences are chosen suboptimally, then the r,+i
observed far into the future can be misleading.

Peng and Williams (1994) provide a further discussion and experimental
results showing the superior performance of Q q n one problem domain. Dayan
(1992) shows that under certain assumptions a similar TD(h) approach applied
to learning the V* function converges correctly for any h such that 0 5 A 5 1.
Tesauro (1995) uses a TD(h) approach in his TD-GAMMON program for playing
backgammon.

13.6 GENERALIZING FROM EXAMPLES
Perhaps the most constraining assumption in our treatment of Q learning up to
this point is that the target function is represented as an explicit lookup table,
with a distinct table entry for every distinct input value (i.e., state-action pair).
Thus, the algorithms we discussed perform a kind of rote learning and make
no attempt to estimate the Q value for unseen state-action pairs by generalizing
from those that have been seen. This rote learning assumption is reflected in the
convergence proof, which proves convergence only if every possible state-action
pair is visited (infinitely often!). This is clearly an unrealistic assumption in large
or infinite spaces, or when the cost of executing actions is high. As a result,
more practical systems often combine function approximation methods discussed
in other chapters with the Q learning training rules described here.

It is easy to incorporate function approximation algorithms such as BACK-
PROPAGATION into the Q learning algorithm, by substituting a neural network for
the lookup table and using each ~ (s , a) update as a training example. For example,
we could encode the state s and action a as network inputs and train the network
to output the target values of Q given by the training rules of Equations (13.7)
and (13.10). An alternative that has sometimes been found to be more successful
in practice is to train a separate network for each action, using the state as input
and Q as output. Another common alternative -is to train one network with the
state as input, but with one Q output for each action. Recall that in Chapter 1, we
discussed approximating an evaluation function over checkerboard states using a
linear function and the LMS algorithm.

In practice, a number of successful reinforcement learning systems have been
developed by incorporating such function approximation algorithms in place of the
lookup table. Tesauro's successful TD-GAMMON program for playing backgammon
used a neural network and the BACKPROPAGATION algorithm together with a TD(A)
training rule. Zhang and Dietterich (1996) use a similar combination of BACKPROP-
AGATION and TD(h) for job-shop scheduling tasks. Crites and Barto (1996) describe

a neural network reinforcement learning approach for an elevator scheduling task.
Thrun (1996) reports a neural network based approach to Q learning to learn basic
control procedures for a mobile robot with sonar and camera sensors. Mahadevan
and Connell (1991) describe a Q learning approach based on clustering states,
applied to a simple mobile robot control problem.

Despite the success of these systems, for other tasks reinforcement learning
fails to converge once a generalizing function approximator is introduced. Ex-
amples of such problematic tasks are given by Boyan and Moore (1995), Baird
(1995), and Gordon (1995). Note the convergence theorems discussed earlier in
this chapter apply only when Q is represented by an explicit table. To see the
difficulty, consider using a neural network rather than an explicit table to repre-
sent Q. Note if the learner updates the network to better fit the training Q value
for a particular transition (si, ai), the altered network weights may also change
the Q estimates for arbitrary other transitions. Because these weight changes may
increase the error in Q estimates for these other transitions, the argument prov-
ing the original theorem no longer holds. Theoretical analyses of reinforcement
learning with generalizing function approximators are given by Gordon (1995)
and Tsitsiklis (1994). Baird (1995) proposes gradient-based methods that circum-
vent this difficulty by directly minimizing the sum of squared discrepancies in
estimates between adjacent states (also called Bellman residual errors).

13.7 RELATIONSHIP TO DYNAMIC PROGRAMMING
Reinforcement learning methods such as Q learning are closely related to a long
line of research on dynamic programming approaches to solving Markov decision
processes. This earlier work has typically assumed that the agent possesses perfect
knowledge of the functions S(s, a) and r(s, a) that define the agent's environment.
Therefore, it has primarily addressed the question of how to compute the optimal
policy using the least computational effort, assuming the environment could be
perfectly simulated and no direct interaction was required. The novel aspect of
Q learning is that it assumes the agent does not have knowledge of S(s, a) and
r(s, a), and that instead of moving about in an internal mental model of the state
space, it must move about the real world and observe the consequences. In this
latter case our primary concern is usually the number of real-world actions that the
agent must perform to converge to an acceptable policy, rather than the number of
computational cycles it must expend. The reason is that in many practical domains
such as manufacturing problems, the costs in time and in dollars of performing
actions in the external world dominate the computational costs. Systems that learn
by moving about the real environment and observing the results are typically called
online systems, whereas those that learn solely by simulating actions within an
internal model are called ofline systems.

The close correspondence between these earlier approaches and the rein-
forcement learning problems discussed here is apparent by considering Bellman's
equation, which forms the foundation for many dynamic programming approaches

to solving MDPs. Bellman's equation is

Note the very close relationship between Bellman's equation and our earlier def-
inition of an optimal policy in Equation (13.2). Bellman (1957) showed that the
optimal policy n* satisfies the above equation and that any policy n satisfying
this equation is an optimal policy. Early work on dynamic programming includes
the Bellman-Ford shortest path algorithm (Bellman 1958; Ford and Fulkerson
1962), which learns paths through a graph by repeatedly updating the estimated
distance to the goal for each graph node, based on the distances for its neigh-
bors. In this algorithm the assumption that graph edges and the goal node are
known is equivalent to our assumption that 6(s, a) and r (s , a) are known. Barto
et al. (1995) discuss the close relationship between reinforcement learning and
dynamic programming.

13.8 SUMMARY AND FURTHER READING
The key points discussed in this chapter include:

0 Reinforcement learning addresses the problem of learning control strategies
for autonomous agents. It assumes that training information is available in
the form of a real-valued reward signal given for each state-action transition.
The goal of the agent is to learn an action policy that maximizes the total
reward it will receive from any starting state.

0 The reinforcement learning algorithms addressed in this chapter fit a problem
setting known as a Markov decision process. In Markov decision processes,
the outcome of applying any action to any state depends only on this ac-
tion and state (and not on preceding actions:or states). Markov decision
processes cover a wide range of problems including many robot control,
factory automation, and scheduling problems.

0 Q learning is one form of reinforcement learning in which the agent learns
an evaluation function over states and actions. In particular, the evaluation
function Q(s , a) is defined as the maximum expected, discounted, cumulative
reward the agent can achieve by applying action a to state s. The Q learning
algorithm has the advantage that it can-be employed even when the learner
has no prior knowledge of how its actions affect its environment.

0 Q learning can be proven to converge to the correct Q function under cer-
tain assumptions, when the learner's hypothesis ~ (s , a) is represented by a
lookup table with a distinct entry for each (s , a) pair. It can be shown to
converge in both deterministic and nondeterministic MDPs. In practice, Q
learning can require many thousands of training iterations to converge in
even modest-sized problems.

0 Q learning is a member of a more general class of algorithms, called tem-
poral difference algorithms. In general, temporal difference algorithms learn

CHAFER 13 REINFORCEMENT LEARNING 387

by iteratively reducing the discrepancies between the estimates produced by
the agent at different times.

Reinforcement learning is closely related to dynamic programming ap-
proaches to Markov decision processes. The key difference is that histori-
cally these dynamic programming approaches have assumed that the agent
possesses knowledge of the state transition function 6(s, a) and reward func-
tion r (s , a). In contrast, reinforcement learning algorithms such as Q learning
typically assume the learner lacks such knowledge.

The common theme that underlies much of the work on reinforcement learn-
ing is to iteratively reduce the discrepancy between evaluations of successive
states. Some of the earliest work on such methods is due to Samuel (1959). His
checkers learning program attempted to learn an evaluation function for checkers
by using evaluations of later states to generate training values for earlier states.
Around the same time, the Bellman-Ford, single-destination, shortest-path algo-
rithm was developed (Bellman 1958; Ford and Fulkerson 1962), which propagated
distance-to-goal values from nodes to their neighbors. Research on optimal control
led to the solution of Markov decision processes using similar methods (Bellman
1961; Blackwell 1965). Holland's (1986) bucket brigade method for learning clas-
sifier systems used a similar method for propagating credit in the face of delayed
rewards. Barto et al. (1983) discussed an approach to temporal credit assignment
that led to Sutton's paper (1988) defining the TD(k) method and proving its con-
vergence for k = 0. Dayan (1992) extended this result to arbitrary values of k.
Watkins (1989) introduced Q learning to acquire optimal policies when the re-
ward and action transition functions are unknown. Convergence proofs are known
for several variations on these methods. In addition to the convergence proofs
presented in this chapter see, for example, (Baird 1995; Bertsekas 1987; Tsitsiklis
1994, Singh and Sutton 1996).

Reinforcement learning remains an active research area. McCallum (1995)
and Littman (1996), for example, discuss the extension of reinforcement learning
to settings with hidden state variables that violate the Markov assumption. Much
current research seeks to scale up these methods to larger, more practical prob-
lems. For example, Maclin and Shavlik (1996) describe an approach in which a
reinforcement learning agent can accept imperfect advice from a trainer, based on
an extension to the KBANN algorithm (Chapter 12). Lin (1992) examines the role
of teaching by providing suggested action sequences. Methods for scaling Up by
employing a hierarchy of actions are suggested by Singh (1993) and Lin (1993).
Dietterich and Flann (1995) explore the integration of explanation-based methods
with reinforcement learning, and Mitchell and Thrun (1993) describe the appli-
cation of the EBNN algorithm (Chapter 12) to Q learning. Ring (1994) explores
continual learning by the agent over multiple tasks.

Recent surveys of reinforcement learning are given by Kaelbling et al.
(1996); Barto (1992); Barto et al. (1995); Dean et al. (1993).

EXERCISES
13.1. Give a second optimal policy for the problem illustrated in Figure 13.2.
13.2. Consider the deterministic grid world shown below with the absorbing goal-state

G. Here the immediate rewards are 10 for the labeled transitions and 0 for all
unlabeled transitions.
(a) Give the V* value for every state in this grid world. Give the Q(s, a) value for

every transition. Finally, show an optimal policy. Use y = 0.8.
(b) Suggest a change to the reward function r(s, a) that alters the Q(s, a) values,

but does not alter the optimal policy. Suggest a change to r(s, a) that alters
Q(s, a) but does not alter V*(s, a).

(c) Now consider applying the Q learning algorithm to this grid world, assuming
the table of Q values is initialized to zero. Assume the agent begins in the
bottom left grid square and then travels clockwise around the perimeter of
the grid until it reaches the absorbing goal state, completing the first training
episode. Describe which Q values are modified as a result of this episode, and
give their revised values. Answer the question again assuming the agent now
performs a second identical episode. Answer it again for a third episode.

13.3. Consider playing Tic-Tac-Toe against an opponent who plays randomly. In partic-
ular, assume the opponent chooses with uniform probability any open space, unless
there is a forced move (in which case it makes the obvious correct move).
(a) Formulate the problem of learning an optimal Tic-Tac-Toe strategy in this case

as a Q-learning task. What are the states, transitions, and rewards in this non-
deterministic Markov decision process?

(b) Will your program succeed if the opponent plays optimally rather than ran-
domly?

13.4. Note in many MDPs it is possible to find two policies nl and n2 such that nl
outperforms 172 if the agent begins in'some state sl, but n2 outperforms nl if it
begins in some other state s2. Put another way, Vnl (sl) > VR2(s1), but Vn2(s2) >
VRl (s2) Explain why there will always exist a single policy that maximizes Vn(s)
for every initial state s (i.e., an optimal policy n*). In other words, explain why an
MDP always allows a policy n* such that (Vn, s) vn*(s) 2 Vn(s).

REFERENCES
Baird, L. (1995). Residual algorithms: Reinforcement learning with function approximation. Proceed-

ings of the Twelfrh International Conference on Machine Learning @p. 30-37). San Francisco:
Morgan Kaufmann.

CHaPrER 13 REINFORCEMENT LEARNING 389

Barto, A. (1992). Reinforcement learning and adaptive critic methods. In D. White & S. Sofge (Eds.),
Handbook of intelligent control: Neural, fuzzy, and adaptive approaches (pp. 469-491). New
York: Van Nostrand Reinhold.

Barto, A., Bradtke, S., & Singh, S. (1995). Learning to act using real-time dynamic programming.
ArtiJicial Intelligence, Special volume: Computational research on interaction and agency,
72(1), 81-138.

Barto, A., Sutton, R., & Anderson, C. (1983). Neuronlike adaptive elements that can solve difficult
learning control problems. IEEE Transactions on Systems, Man, and Cybernetics, 13(5), 834-
846.

Bellman, R. E. (1957). Dynamic Programming. Princeton, NJ: Princeton University Press.
Bellrnan, R. (1958). On a routing problem. Quarterly of Applied Mathematics, 16(1), 87-90.
Bellman, R. (1961). Adaptive control processes. Princeton, NJ: Princeton University Press.
Berenji, R. (1992). Learning and tuning fuzzy controllers through reinforcements. IEEE Transactions

on Neural Networks, 3(5), 724-740.
Bertsekas, D. (1987). Dynamicprogramming: Deterministic and stochastic models. Englewood Cliffs,

NJ: Prentice Hall.
Blackwell, D. (1965). Discounted dynamic programming. Annals of Mathematical Statistics, 36,226-

235.
Boyan, J., & Moore, A. (1995). Generalization in reinforcement learning: Safely approximating the

value function. In G. Tesauro, D. Touretzky, & T. Leen (Eds.), Advances in Neural Information
Processing Systems 7. Cambridge, M A : MIT Press.

Crites, R., & Barto, A. (1996). Improving elevator performance using reinforcement learning. In
D. S. Touretzky, M. C. Mozer, & M. C. Hasselmo (Eds.), Advances in Neural Information
Processing Systems, 8.

Dayan, P. (1992). The convergence of TD(A) for general A. Machine Learning, 8, 341-362.
Dean, T., Basye, K., & Shewchuk, J. (1993). Reinforcement learning for planning and control. In S.

Minton (Ed.), Machine Learning Methods for Planning @p. 67-92). San Francisco: Morgan
Kaufmann.

Dietterich, T. G., & Flann, N. S. (1995). Explanation-based learning and reinforcement learning:
A unified view. Proceedings of the 12th International Conference on Machine Learning @p.
176-184). San Francisco: Morgan Kaufmann.

Ford, L., & Fulkerson, D. (1962). Flows in networks. Princeton, NJ: Princeton University Press.
Gordon, G. (1995). Stable function approximation in dynamic programming. Proceedings of the

Twelfth International Conference on Machine Learning (pp. 261-268). San Francisco: Morgan
Kaufmann.

Kaelbling, L. P., Littman, M. L., & Moore, A. W. (1996). Reinforcement learning: A survey. Journal
of AI Research, 4, 237-285. Online journal at http://www.cs.washington.edu/research/jair/-
home.htm1.

Holland, J. H. (1986). Escaping brittleness: The possibilities of general-purpose learning algorithms
applied to parallel rule-based systems. In Michalski, Carbonell, & Mitchell (Eds.), Machine
learning: An artijicial intelligence approach (Vol. 2, pp. 593423). San Francisco: Morgan
Kaufmann.

Laird, J. E., & Rosenbloom, P. S. (1990). Integrating execution, planning, and learning in SOAR for
external environments. Proceedings of the Eighth National Conference on Artificial Intelligence
(pp. 1022-1029). Menlo Park, CA: AAAI Press.

Lin, L. J. (1992). Self-improving reactive agents based on reinforcement learning, planning, and
teaching. Machine Learning, 8, 293-321.

Lin, L. J. (1993). Hierarchical learning of robot skills by reinforcement. Proceedings of the Interna-
tional Conference on Neural Networks.

Littman, M. (1996). Algorithms for sequential decision making (Ph.D. dissertation and Technical
Report CS-96-09). Brown University, Department of Computer Science, Providence, RI.

Maclin, R., & Shavlik, J. W. (1996). Creating advice-taking reinforcement learners. Machine Learn-
ing, 22, 251-281.

Mahadevan, S. (1996). Average reward reinforcement learning: Foundations, algorithms, and empir-
ical results. Machine Learning, 22(1), 159-195.

Mahadevan, S., & Connell, J. (1991). Automatic programming of behavior-based robots using rein-
forcement learning. In Proceedings of the Ninth National Conference on ArtGcial Intelligence.
San Francisco: Morgan Kaufmann.

McCallum, A. (1995). Reinforcement learning with selective perception and hidden state (Ph.D. dis-
sertation). Department of Computer Science, University of Rochester, Rochester, NY.

Mitchell, T. M., & Thrun, S. B. (1993). Explanation-based neural network learning for robot control.
In C. Giles, S. Hanson, & J. Cowan (Eds.), Advances in Neural Information Processing System
5 (pp. 287-294). San Francisco: Morgan-Kaufmann.

Moore, A., & Atkeson C. (1993). Prioritized sweeping: Reinforcement learning with less data and
less real time. Machine Learning, 13, 103.

Peng, J., & Williams, R. (1994). Incremental multi-step Q-learning. Proceedings of the Eleventh
international Conference on Machine Learning (pp. 226-232). San Francisco: Morgan Kauf-
mann.

Ring, M. (1994). Continual learning in reinforcement environments (Ph.D. dissertation). Computer
Science Department, University of Texas at Austin, Austin, TX.

Samuel, A. L. (1959). Some studies in machine learning using the game of checkers. IBM Journal
of Research and Development, 3, 21 1-229.

Singh, S. (1992). Reinforcement learning with a hierarchy of abstract models. Proceedings of the
Tenth National Conference on Art@cial Intelligence (pp. 202-207). San Jose, CA: AAAI
Press.

Singh, S. (1993). Learning to solve markovian decision processes (Ph.D. dissertation). Also CMPSCI
Technical Report 93-77, Department of Computer Science, University of Massachusetts at
Amherst.

Singh, S., & Sutton, R. (1996). Reinforcement learning with replacing eligibility traces. Machine
Learning, 22, 123.

Sutton, R. (1988). Learning to predict by the methods of temporal differences. Machine learning, 3,
9-44

Sutton R. (1991). Planning by incremental dynamic programming. Proceedings of the Eighth Znter-
national Conference on Machine Learning (pp. 353-357). San Francisco: Morgan Kaufmann.

Tesauro, G. (1995). Temporal difference learning and TD-GAMMON. Communications of the ACM,
38(3), 58-68.

Thrun, S. (1992). The role of exploration in learning control. In D. White & D. Sofge (Eds.),
Handbook of intelligent control: Neural, fizzy, and adaptive approaches (pp. 527-559). New
York: Van Nostrand Reinhold.

Thrun, S. (1996). Explanation-based neural network learning: A lifelong learning approach. Boston:
Kluwer Academic Publishers.

Tsitsiklis, J. (1994). Asynchronous stochastic approximation and Q-learning. Machine Learning,
16(3), 185-202.

Watkins, C. (1989). Learning from delayed rewards (Ph.D. dissertation). King's College, Cambridge,
England.

Watkins, C., & Dayan, P. (1992). Q-learning. Machine Learning, 8, 279-292.
Zhang, W., & Dietterich, T. G. (1996). High-performance job-shop scheduling with a time-delay

TD(A) network. In D. S. Touretzky, M. C. Mozer, & M. E. Hasselmo (Eds.), Advances in
neural information processing systems, 8, 1024-1030.

APPENDIX

NOTATION

Below is a summary of notation used in this book.

(a, b]: Brackets of the form [, 1, (, and) are used to represent intervals,
where square brackets represent intervals including the boundary
and round parentheses represent intervals excluding the boundary.
For example, (1, 31 represents the interval 1 < x 5 3.

C x i : The s u m x ~ + x 2 + . . . + x n .
i=l
n

H x i : The product xl .x2. .-xn.
i=l

F: The symbol for logical entailment. For example, A F B denotes
that B follows deductively from A.

>,: The symbol for the more general than relation. For example, hi >,
hj denotes that hypothesis hi is more general than hi.

argmax f (x): The value of x that maximizes f (x). For example,
xex

argmax x2 = -3
x~{1,2,-3)

f(x): A function that approximates the function f (x).
6: In PAC-learning, a bound on the probability of failure. In artificial

neural network learning, the error term associated with a single unit
output.

E :
r] :

P:
n:

V E (G) :
C :
D :
D:

E [x] :
E (G) :

Error:
H :

h (x) :
P (x) :

Pr(x) :
p(x>:

Q<s , a):
3:

V C (H) :
V S H , D :

A bound on the error of a hypothesis (in PAC-learning).
The learning rate in neural network and related learning methods.
The mean of a probability distribution.
The standard deviation of a probability distribution.
The gradient of E with respect to the vector G .
Class of possible target functions.
The training data.
A probability distribution over the instance space.
The expected value of x .
The sum of squared errors of an artifial neural network whose
weights are given by the vector G .
The error in a discrete-valued hypothesis or prediction.
Hypothesis space.
The prediction produced by hypothesis h for instance x .
The probability (mass) of x .
The probability (mass) of the event x .
The probability density of x .
The Q function from reinforcement learning.
The set of real numbers.
The Vapnik-Chervonenkis dimension of the hypothesis space H .
The Version Space; that is, the set of hypotheses from H that are
consistent with D.
In artificial neural networks, the weight from node i to node j.
Instance space.

INDEXES

400 SUBJECT INDEX

SUBJECT INDEX
Page numbers in italics refer to tables; numbers in bold to figures. An "n" fol-
lowing a page number refers to a footnote on that page.

Absorbing state, 371
ABSTRIPS, 329
Acyclic neural networks. See Multilayer

feedforward networks
Adaline rule. See Delta rule
Additive Chernoff bounds, 210-21 1
Adelines, 123
Agents, in reinforcement learning, 368
Agnostic learning, 210-21 1,225
ALVINN system, 82-83, 84
Analytical-inductive learning. See

Inductive-analytical learning
Analytical learning, 307-330

inductive learning, comparison with,
310, 328-329, 334-336, 362

ANN learning. See Neural network
learning

ANNs. See Neural networks, artificial
Antecedents of Horn clause, 285
AQ algorithm, 279-280
AQ14 algorithm, comparison with GABIL,

256,258
Arbitrary functions, representation by

feedforward networks, 105-106
Artificial intelligence, influence on

machine learning, 4
Artificial neural networks. See Neural

networks, artificial
ASSISTANT, 77
Astronomical structures, machine learning

classification of, 3
Attributes:

choice of, in sequential vs. simultaneous
covering algorithms, 280-281

continuous-valued, 72-73
cost-sensitive measures, 75-76
discrete-valued, 72
measures for selection of, 73-74, 77
missing values, strategies for, 75

Autonomous vehicles, 3, 4, 82-83, 84
Average reward, 371

Backgammon learning program. See
TD-GAMMON

BACKPROPAGATION algorithm, 83,97, 124
applications of, 81, 84, 85, 96, 113
convergence and local minima, 104-105
definition of, 98
discovery of hidden layer representations,

106-109, 123
feedforward networks as hypothesis

space, 105-106
gradient descent search, 89, 115-1 16,

123
inductive bias of, 106
KBANN algorithm:

comparison with, 344-345
use in, 339

momentum, addition of, 100, 104
overfitting in, 108, 110-1 11
in Q learning, 384
search of hypothesis space, 97, 106,

122-123
in decision tree learning, comparison

with, 106
by genetic algorithms, comparison

with, 259
by KBANN and TANGENTPROP

algorithms, comparison with,
350-351

stochastic gradient descent version,
98-100, 104-105, 107-108

TANGENTPROP algorithm, comparison
with, 349

weight update rule:
alternative error functions, 117-1 18
derivation of, 101-102
for hidden unit weights, 103

in KBANN algorithm, 343-344
optimization methods, 119 ,
for output unit weights, 102-103, 171

Backtracking, ID3 algorithm and, 62
Backward chaining search for explanation

generation, 3 14
Baldwin effect, 250, 267

computational models for, 267-268
Bayes classifier, naive. See Naive Bayes

classifier
Bayes optimal classifier, 174-176, 197,

222
learning Boolean concepts using version

spaces, 176
Bayes optimal learner. See Bayes optimal

classifier
Bayes rule. See Bayes theorem
Bayes theorem, 4, 156-159

in BRUTE-FORCE MAP LEARNING
algorithm, 160-162

concept learning and, 158-163
in inductive-analytical learning, 338

Bayesian belief networks, 184-191
choice among alternative networks, 190
conditional independence in, 185
constraint-based approaches in, 191
gradient ascent search in, 188-190
inference methods, 187-188
joint probability distribution

representation, 185-1 87
learning from training data, 188-191
naive Bayes classifier, comparison with,

186
representation of causal knowledge, 187

Bayesian classifiers, 198. See also Bayes
optimal classifier; Naive Bayes
classifier

Bayesian learning, 154-198
decision tree learning, comparison with,

198
Bayesian methods, influence on machine

learning, 4
Beam search:

general-to-specific. See General-to-
specific beam search

generate-and-test. See Generate-and-test
beam search

Bellman-Ford shortest path algorithm, 386,
1117

Bellman residual errors, 385
Bellman's equation, 385-386
BFS-ID3 algorithm, 63
Binomial distribution, 133-137, 143, 151
Biological evolution, 249, 250, 266-267
Biological neural networks, comparison

with artificial neural networks, 82
Bit strings, 252-253, 258-259, 269
Blocks, stacking of. See Stacking problems
Body of Horn clause, 285
Boolean conjunctions, PAC learning of,

211-212
Boolean functions:

representation by feedforward networks,
105-106

representation by perceptrons, 87-88
Boundary set representation for version

spaces, 3 1-36
definition of, 3 1

Bounds:
one-sided, 141, 144
two-sided, 141

Brain, neural activity in, 82
Breadth first search in ID3 algorithm, 63
BRUTE-FORCE MAP LEARNING algorithm,

159-162
Bayes theorem in, 160-162

C4.5 algorithm, 55, 77
GABIL, comparison with, 256,258
missing attribute values, method for

handling, 75
rule post-pruning in, 71-72

CADET system, 241-244
CANDIDATE-ELIMINATION algorithm,

29-37,4547
applications of, 29, 302
Bayesian interpretation of, 163
computation of version spaces, 32-36

definition of, 33
ID3 algorithm, comparison with, 61-64
inductive bias of, 43-46, 63-64
limitations of, 29, 37, 41, 42, 46
search of hypothesis space, 64

Candidate specializations:
generated by FOCL algorithm, 357-361
generated by FOIL algorithm, 287-288,

CART system, 77
CASCADE-CORRELATION algorithm,

121-123
Case-based reasoning, 23 1, 240-244, 246,

247
advantages of, 243-244
applications of, 240
other instance-based learning methods,

comparison with, 240
Causal knowledge, representation by

Bayesian belief networks, 187
Central Limit Theorem, 133, 142-143, 167
Checkers learning program, 2-3,5-14, 387

algorithms for, 14
design, 13
as sequential control process, 369

Chemical mass spectroscopy,
CANDIDATE-ELIMINATION algorithm
in, 29

Chess learning program, 308-310
explanation-based learning in, 325

Chunking, 327, 330
CIGOL, 302
Circuit design, genetic programming in,

265-266
' Circuit layout, genetic algorithms in,

256
Classification problems, 54
CLA~~IFYJAIVEBAYES-TEXT, 182-183
CLAUDIEN, 302
Clauses, 284, 285
CLS. See Concept Learning System
Clustering, 191
CN2 algorithm, 278, 301

choice of attribute-pairs in, 280-281
Complexity, sample. See Sample

complexity
Computational complexity, 202
Computational complexity theory,

influence on machine learning, 4
Computational learning theory,

201-227
Concept learning, 20-47

algorithms for, 47
Bayes theorem and, 158-163
definition of, 21
genetic algorithms in, 256
ID3 algorithm specialized for, 56
notation for, 22-23

search of hypothesis space, 23-25,
4-7

task design in, 21-22
Concept Learning System, 77
Concepts, partially learned, 38-39
Conditional independence, 185

in Bayesian belief networks, 186-187
Confidence intervals, 133, 138-141, 150,

151
for discrete-valued hypotheses, 13 1-132,

140-141
derivation of, 142-143

one-sided, 144, 145
Conjugate gradient method, 119
Conjunction of boolean literals, PAC

learning of, 21 1-212
Consequent of Horn clause, 285
Consistent learners, 162-163

bound on sample complexity, 207-210,
225

equation for, 209
Constants, in logic, 284, 285
Constraint-based approaches in Bayesian

belief networks, 191
Constructive induction, 292
Continuous functions, representation

by feedforward networks,
105-106

Continuous-valued hypotheses, training
error of, 89-90

Continuous-valued target function, 197
maximum likelihood (ML) hypothesis

for, 164-167
Control theory, influence on machine

learning, 4
Convergence of Q learning algorithm:

in deterministic environments, 377-380,
386

in nondeterministic environments,
382-383, 386

Credit assignment, 5
Critic, 12, 13
Cross entropy, 170

minimization of, 1 18
Cross-validation, 11 1-1 12

for comparison of learning algorithms,
145-151

k-fold. See k-fold cross-validation
in k-NEAREST NEIGHBOR algorithm, 235

leave-one-out, 235
in neural network learning, 11 1-1 12

Crossover mask, 254
Crossover operators, 252-254, 261,

262
single-point, 254, 261
two-point, 254, 257-258
uniform, 255

Crowding, 259,
Cumulative reward, 371
Curse of dimensionality, 235

Data mining, 17
Decision tree learning, 52-77

algorithms for, 55, 77. See also C4.5
algorithm, ID3 algorithm

applications of, 54
Bayesian learning, comparison with, 198
impact of pruning on accuracy, 128-129
inductive bias in, 63-66
k-NEAREST NEIGHBOR algorithm,

comparison with, 235
Minimum Description Length principle

in, 173-174
neural network learning, comparison

with, 85
overfitting in, 6749, 76-77, 11 1
post-pruning in, 68-69, 77
reduced-error pruning in, 69-7 1
rule post-pruning in, 71-72, 281
search of hypothesis space, 60-62

by BACKPROPAGATION algorithm,
comparison with, 106

Deductive learning, 321-322
Degrees of freedom, 147
Delayed learning methods, comparison

with eager learning, 244-245
Delayed reward, in reinforcement learning,

369
Delta rule, 11, 88-90, 94, 99, 123
Demes, 268
Determinations, 325
Deterministic environments, Q learning

algorithm for, 375
Directed acyclic neural networks. See

Multilayer feedforward networks
Discounted cumulative reward. 371

Discrete-valued hypotheses:
confidence intervals for, 131-132,

140-141
derivation of, 142-143

training error of, 205
Discrete-valued target functions,

approximation by decision tree
learning, 52

Disjunctive sets of rules, learning by
sequential covering algorithms,
275-276

Distance-weighted k-NEAREST NEIGHBOR
algorithm, 233-234

Domain-independent learning algorithms,
336

Domain theory, 310, 329. See also
imperfect domain theory; Perfect
domain theory; Prior knowledge

in analytical learning, 31 1-312
as KBANN neural network, 342-343
in PROLOG-EBG, 322
weighting of components in EBNN,

35 1-352
DYNA, 380
Dynamic programming:

applications to reinforcement learning,
380

reinforcement learning and, 385-387

Eager learning methods, comparison with
lazy learning, 244245

EBG algorithm, 3 13
EBNN algorithm, 351-356, 362, 387

other explanation-based learning
methods, comparison with, 356

prior knowledge and gradient descent in,
339

TANGENTPROP algorithm in, 353
weighting of inductive-analytical

components in, 355,362
EGGS algorithm, 3 13
EM algorithm, 190-196, 197

applications of, 191, 194
derivation of algorithm for k-means,

195-196
search for maximum likelihood (ML)

hypothesis, 194-195

Entailment, 321n
relationship with 8-subsumption and

more-general-than partial ordering,
299-300

Entropy, 55-57, 282
of optimal code, 172n

Environment, in reinforcement learning,
368

Equivalent sample size, 179-1 80
Error bars for discrete-valued hypotheses.

See Confidence intervals, for
discrete-valued hypotheses

Error of hypotheses:
sample. See Sample error
training. See Training error
true. See True error

Estimation bias, 133, 137-138, 151
Estimator, 133, 137-138, 143, 150-151
Evolution of populations:

argument for Occam's razor, 66
in genetic algorithms, 260-262

Evolutionary computation, 250, 262
applications of, 269

Example-driven search, comparison with
generate-and-test beam search, 281

Expected value, 133, 136
Experiment generator, 12-13
Explanation-based learning, 3 12-330

applications of, 325-328
derivation of new features, 320-321
inductive bias in, 322-323
inductive learning and, 330
lazy methods in, 328
limitations of, 308, 329
prior knowledge in, 308-309
reinforcement learning and, 330
utility analysis in, 327-328

Explanations generated by backward
chaining search, 314

Explicit prior knowledge, 329
Exploration in reinforcement learning, 369

Face recognition, 17
BACKPROPAGATION algorithm in, 8 1,

112-1 17
Feedforward networks. See Multilayer

FIND-S algorithm, 26-28, 46
Bayesian interpretation of, 162-163
definition of, 26
inductive bias of, 45
limitations of, 28-29
mistake-bound learning in, 220-221
PAC learning of boolean conjunctions

with, 212
search of hypothesis space, 27-28

Finite horizon reward, 37 1
First-order Horn clauses, 283-284,

3 18-3 19. See also First-order rules
in analytical learning, 3 1 1
in PROLOG-EBG, 313, 314

First-order logic, basic definitions, 285
First-order representations, applications of,

275
First-order resolution rule, 296-297
First-order rules, 274-275, 283, 301, 302.

See also First-order Horn clauses
in FOIL algorithm, 285-291
propositional rules, comparison with,

283
Fitness function, 250-252, 255-256, 258
Fitness proportionate selection, 255
Fitness sharing, 259
FOCL algorithm, 302

extensions to FOIL, 357
search step alteration with prior

knowledge, 339-340
FOIL algorithm, 286,290-291, 302

extensions in FOCL, 357
information gain measure in, 289
LEARN-ONE-RULE and sequential

covering algorithms, comparison
with, 287

learning first-order rules in, 285-291
post-pruning in, 291
recursive rule learning in, 290

Function approximation, 8
Function approximation algorithms:

choice of, 9-1 1
as lookup table substitute, 384

Functions, in logic, 284, 285

GABIL, 256-259, 269
C4.5 and AQ14 algorithms, comm.rison

feedforward networks with, 25-6, 258

extensions to, 258-259
ID5R algorithm, comparison with, 258

Gain ratio, 73-74
GAS. See Genetic algorithms
Gaussian distribution. See Normal

distribution
Gaussian kernel function, 238-240
General-to-specific beam search, 277-279,

302
advantages of, 281
in CN2 algorithm, 278
in FOCL algorithm, 357-361
in FOIL algorithm, 287,357-358

General-to-specific ordering of
hypotheses, 24-25, 4546. See also
More-general-than partial ordering

Generalization accuracy in neural
networks, 1 10-1 1 1

Generalizer, 12, 13
Generate-and-test beam search, 250

example-driven search, comparison with,
28 1

inverse entailment operators, comparison
with, 299

inverse resolution, comparison with,
298-299

Genetic algorithms, 249-270
advantages of, 250
applications of, 256, 269
fitness function in, 255-256
limitations of, 259
parallelization of, 268
representation of hypotheses, 252-253
search of hypothesis space, 259,

268-269
Genetic operators, 252-255, 257, 261-262
Genetic programming, 250, 262-266, 269

applications of, 265, 269
performance of, 266
representation in, 262-263

Gibbs algorithm, 176
Global method, 234
GOLEM, 28 1
GP. See Genetic programming
Gradient ascent search, 170-171

in Bayesian belief networks, 188-190
Gradient descent search, 89-91, 93, 97,

115-116, 123
in EBNN algorithm, 339

least-squared error hypothesis in, 167
limitations of, 92
weight update rule, 91-92, 237

stochastic approximation to, 92-94,
98-100, 104-105, 107-108

Gradient of error, 91
Greedy search:

in sequential covering algorithms,
276-278

in PROLOG-EBG, 323
GRENDEL program, 303
Ground literal, 285

HALVING algorithm, 223
mistake-bound learning in, 221-222

Handwriting recognition, 3 4
BACKPROPAGATION algorithm in, 8 1
TANGENTPROP algorithm in, 348-349

Head of Horn clause, 285
Hidden layer representations, discovery

by BACKPROPAGATION algorithm,
106-109, 123

Hidden units:
BACKPROPAGATION weight tuning rule

for, 103
CASCADE-CORRELATION algorithm,

addition by, 121-123
choice in radial basis function networks,

239-240
in face recognition task, 1 15-1 17

Hill-climbing search:
in FOIL algorithm, 286,287
in genetic algorithms, 268
in ID3 algorithm, 60-61

Hoeffding bounds, 210-21 1
Horn clauses, 284, 285
Horn clauses, first-order. See First-order

Horn clauses
Human learning:

explanations in, 309
prior knowledge in, 330

Hypotheses. See also Discrete-valued
hypotheses; General-to-specific
ordering of hypotheses; Hypothesis
space

error differences between two, 143-144
estimation of accuracy, 129-130

Hypotheses, estimation of accuracy
(continued)

bias and variance in estimate, 129,
151, 152

errors in, 129-131, 151
evaluation of, 128-129
justification of, in inductive vs. analytical

learning, 334-336
representations of, 23
testing of, 144-145

Hypothesis space, 14-15
bias in, 40-42, 46, 129
finite, sample complexity for, 207-214,

225
infinite, sample complexity for, 214-220
VC dimension of, 214-217

Hypothesis space search
by BACKPROPAGATION algorithm, 97,

106, 122-123
comparison with decision tree

learning, 106
comparison with KBANN and

TANGENTPROP algorithms, 350-35 1
by CANDIDATE-ELIMINATION algorithm,

64
in concept learning, 23-25, 46-47
constraints on, 302-303
by FIND-S algorithm, 27-28
by FOIL algorithm, 286-287, 357-361
by genetic algorithms, 250, 259
by gradient descent, 90-91
by ID3 algorithm, 60-62,64, 76
by KBANN algorithm, 346
by learning algorithms, 24
by LEARN-ONE-RULE, 277
in machine learning, 14-15, 18
use of prior knowledge, 339-340, 362

ID3 algorithm, 55-64,77
backtracking and, 62
CANDIDATE-ELIMINATION algorithm,

comparison with, 61-62
choice of attributes in, 280-281
choice of decision tree, 63
cost-sensitive measures, 75-76
extensions to, 77. See also C4.5

algorithm

inductive bias of, 63-64, 76
LEARN-ONE-RULE, search comparison

with, 277
limitations of, 61-62
overfitting in, 67-68
search of hypothesis space, 60-62, 64,

76
sequential covering algorithms,

comparison with, 280-281
specialized for concept learning, 56
use of information gain in, 58-60

ID5R algorithm, comparison with GABIL,
258

ILP. See Inductive logic programming
Image encoding in face recognition, 114
Imperfect domain theory:

in EBNN algorithm, 356
in explanation-based learning, 330
in FOCL algorithm, 360
in KBANN algorithm, 344-345

Incremental explanation methods, 328
Incremental gradient descent. See

Stochastic gradient descent
INCREMENTAL VERSION SPACE MERGING

algorithm, 47
Inductive-analytical learning, 334-363

advantages of, 362
explanation-based learning and, 330
learning problem, 337-338
prior knowledge methods to alter search,

339-340,362
properties of ideal systems, 337
weighting of components in EBNN

algorithm, 351-352,355
weighting prior knowledge in, 338

Inductive bias, 39-45, 137-138. See also
Occam's razor; Preference bias;
Restriction bias

of BACKPROPAGATION algorithm, 106
bias-free learning, 40-42
of CANDIDATE-ELIMINATION algorithm,

43-46, 63-64
in decision tree learning, 63-66
definition of, 43
in explanation-based learning, 322-323
of FIND-S algorithm, 45
of ID3 algorithm, 63-64,76
of inductive learning algorithms, 42-46
of k-NEAREST NEIGHBOR algorithm, 234

of LMS algorithm, 64
of ROTE-LEARNER algorithm, 44-45

Inductive inference. See Inductive learning
Inductive learning, 42, 307-308. See

also Decision tree learning;
Genetic algorithms; Inductive logic
programming; Neural network
learning

analytical learning, comparison with,
310, 328-329, 334-336, 362

inductive bias in, 4 2 4 6
Inductive learning hypothesis, 23
Inductive logic programming, 275,29 1

PROLOG-EBG, comparison with, 322
Information gain, 73

definition of, 57-58
in FOIL algorithm, 289
in ID3 algorithm, 5 5 , 5 8 4 0

Information theory:
influence on machine learning, 4
Minimum Description Length principle

and, 172
Initialize-thehypothesis approach,

339-346
Bayesian belief networks in, 346

Instance-based learning, 230-247. See also
Case-based reasoning; k-NEAREST
NEIGHBOR algorithm; Locally
weighted regression

advantages, 245-246
case-based reasoning, comparison with

other methods, 240
limitations of, 23 1

Inverse entailment, 292, 302
first-order, 297
generate-and-test beam search,

comparison with, 299
in PROGOL, 300-302

Inverse resolution, 294-296, 302
first-order, 297-298
generate-and-test beam search,

comparison with, 298-299
limitations of, 300

Inverted deduction, 291-293

J
Jacobian, 354
Job-shop scheduling, genetic algorithms in,

Joint probability distribution, in Bayesian
belief networks, 185-187

k-fold cross-validation, 112, 147, 150
k-means problem, 19 1-193

derivation of EM algorithm for, 195-196
k-NEAREST NEIGHBOR algorithm, 23 1-233,

246
applications of, 234
cross-validation in, 235
decision tree and rule learning,

comparison with, 235
distance-weighted, 233-234
inductive bias of, 234
memory indexing in, 236

k-term CNF expressions, 2 13-214
k-term DNF expressions, 213-214
K2 algorithm, 190-191
KBANN algorithm, 340-347, 362, 387

advantages of, 344
BACKPROPAGATION algorithm,

comparison with, 344-345
BACKPROPAGATION weight update rule

in, 343-344
hypothesis space search by

BACKPROPAGATION and
TANGENTPROP, comparison with,
350-35 1

limitations of, 345
prior knowledge in, 339

kd-tree, 236
Kernel function, 236, 238, 246
Kernel function, Gaussian. See Gaussian

kernel function
Knowledge-Based Artificial Neural

Network (KBANN) algorithm. See
KBANN algorithm

Knowledge compilation, 320
Knowledge level learning, 323-325
Knowledge reformulation, 320

Lamarckian evolution, 266
Language bias. See Restriction bias
Lazy explanation methods, 328
Lazy learning methods, comparison with

eager learning, 244-245

LEARN-ONE-RULE algorithm:
FOIL algorithm, comparison with, 287
ID3 algorithm, search comparison with,

277
rule performance in, 282
rule post-pruning in, 28 1
variations of, 279-280,286

Learning:
human. See Human learning
machine. See Machine learning

Learning algorithms
consistent learners, 162-163
design of, 9-11, 17
domain-independent, 336
error differences between two, 145-15 1
search of hypothesis space, 24

Learning problems, 2-5, 17
computational theory of, 201-202
in inductive-analytical learning, 337-338

Learning rate, 88, 91
Learning systems:

design of, 5-14, 17
program modules, 11-1' :

Least mean squares algori ,m. See LMS
algorithm

Least-squared error hypothesis:
classifiers for, 198
gradient descent in, 167
maximum likelihood (ML) hypothesis

and, 164-167
Leave-one-out cross-validation, 235
Legal case reasoning, case-based reasoning

in, 240
LEMMA-ENUMERATOR algorithm, 324
Lifelong learning, 370
Line search, 119
Linear programming, as weight update

algorithm, 95
Linearly separable sets, 86, 89, 95
LIST-THEN-ELLMINATE algorithm, 30
Literal, 284, 285
LMS algorithm, 11 , 15

inductive bias of, 64
LMS weight update rule. See Delta rule
Local method, 234
Locally weighted regression, 23 1,

236-238, 246
limitations of, 238

Logical constants, 284, 285
Logical terms, 284, 285
Logistic function, 96, 104
Lookup table:

function approximation algorithms as
substitute, 384

neural network as substitute, 384
Lower bound on sample complexity,

217-218

m-estimate of probability, 179-180, 198,
282

Machine learning, 15. See also entries
beginning with Learning

applications, 3, 17
definition of, 2
influence of other disciplines on, 4, 17
search of hypothesis space, 14-15, 18

Manufacturing process control, 17
MAP hypothesis. See Maximum

a posteriori hypothesis
MAP LEARNING algorithm, BRUTE-FORCE.

See BRUTE-FORCE MAP LEARNING
algorithm

Markov decision processes (MDP), 370,
387

applications of, 386
MARKUS, 302
MARVIN, 302
Maximally general hypotheses,

computation by CANDIDATE-
ELIMINATION algorithm, 3 1,
46

Maximally specific hypotheses:
computation by CANDIDATE-

ELIMINATION algorithm, 3 1,
46

computation by FIND-S algorithm,
26-28, 62-63

Maximum a posteriori (MAP) hypothesis,
157, 197. See also BRUTE-FORCE
MAP LEARNING algorithm

naive Bayes classifier and, 178
output of consistent learners, 162-163

Maximum likelihood (ML) hypothesis, 157
EM algorithm search for, 194-195
least-squared error hypothesis and, - -

weight update rules in, 237-238 164-167

prediction of probabilities with,
167-170

MDP. See Markov decision processes
Mean error, 143
Mean value, 133, 136
Means-ends planner, 326
Mechanical design, case-based reasoning

in, 240-244
Medical diagnosis:

attribute selection measure, 76
Bayes theorem in, 157-158

META-DENDRAL, 302
MFOIL, 302
Minimum Description Length principle,

66,69, 171-173, 197, 198
in decision tree learning, 173-174
in inductive logic programming,

292-293
MIS, 302
Mistake-bound learning, 202, 220, 226

in CANDIDATE-ELIMINATION algorithm,
221-222

in FIND-S algorithm, 220-221
in HALVING algorithm, 221-222
in LIST-THEN-ELIMINATE algorithm,

221-222
in WEIGHTED-MAJORITY algorithm,

224-225
Mistake bounds, optimal. See Optimal

mistake bounds
ML hypothesis. See Maximum likelihood

hypothesis
Momentum, addition to BACKPROPAGATION

algorithm, 100, 104
More-general-than partial ordering, 24-28,

46
in CANDIDATE-ELIMINATION algorithm,

29
in FIND-S algorithm, 26-28
O-subsumption, entailment, and, 299-300
in version spaces, 31

Multilayer feedforward networks
BACKPROPAGATION algorithm in, 95-101
function representation in, 105-106, 115
representation of decision surfaces, 96
training of multiple networks, 105
VC dimension of, 218-220

Naive Bayes classifier, 154-155, 177-179,
197

Bayesian belief network, comparison
with, 186

maximum a posteriori (MAP) hypothesis
and, 178

use in text classification, 180-184
Naive Bayes learner. See Naive Bayes

classifier
Negation-as-failure strategy, 279, 319,

321n
Negative literal, 284, 285
Neural network learning, 81-124.

See also BACKPROPAGATION
algorithm; CASCADE-CORRELATION
algorithm, EBNN algorithm,
KBANN algorithm, TANGENTPROP
algorithm

applications of, 83, 85
in face recognition, 113

cross-validation in, 11 1-1 12
decision tree learning, comparison with,

85
discovery of hidden layer representations

in, 107
overfitting in, 123
in Q learning, 384
representation in, 82-83, 84, 105-106

Neural networks, artificial, 81-124.
See also Multilayer feedforward
networks; Radial basis function
networks; Recurrent networks

biological neural networks, comparison
with, 82

creation by KBANN algorithm, 342-343
VC dimension of, 218-220

Neural networks, biological, 82
Neurobiology, influence on machine

learning, 4, 82
New features:

derivation in BACKPROPAGATION
algorithm, 106-109, 123

derivation in explanation-based learning,
320-321

NEWSWEEDER system, 183-184
Nondeterministic environments, Q learning

Mutation operator, 252, 253, 255, 257, 262 in, 381-383

410 SUBJECT INDEX

Normal distribution, 133, 139-140, 143,
151, 165

for noise, 167
in paired tests, 149

Occam's razor, 4, 65-66, 171
Offline learning systems, 385
One-sided bounds, 141, 144
Online learning systems, 385
Optimal brain damage approach, 122
Optimal code, 172
Optimal mistake bounds, 222-223
Optimal policy for selecting actions,

371-372
Optimization problems:

explanation-based learning in, 325
genetic algorithms in, 256, 269
reinforcement learning in, 256

Output encoding in face recognition,
114-1 15

Output units, BACKPROPAGATION weight
update rule for, 102-103

Overfitting, 123
in BACKPROPAGATION algorithm, 108,

11&111
in decision tree learning, 66-69, 76-77,

111
definition of, 67
Minimum Description Length principle

and, 174
in neural network learning, 123

PAC learning, 203-207, 225, 226
of boolean conjunctions, 21 1-212
definition of, 206-207
training error in, 205
true error in, 204-205

Paired tests, 147-150, 152
Parallelization in genetic algorithms, 268
Partially learned concepts, 38-39
Partially observable states in reinforcement

learning, 369-370
Perceptron training rule, 88-89, 94,95
Perceptrons, 86, 95, 96, 123

representation of boolean functions,

VC dimension of, 219
weight update rule, 88-89, 94, 95

Perfect domain theory, 3 12-3 13
Performance measure, 6
Performance system, 11-12, 13
Philosophy, influence on machine

learning, 4
Planning problems:

PRODIGY in, 327
case-based reasoning in, 240-241

Policy for selecting actions, 370-372
Population evolution, in genetic algorithms,

260-262
Positive literal, 284, 285
Post-pruning:

in decision tree learning, 68-69, 77,
28 1

in FOIL algorithm, 291
in LEARN-ONE-RULE, 28 1

Posterior probability, 155-156, 162
Power law of practice, 4
Power set, 40-42
Predicates, 284, 285
Preference bias, 64, 76, 77
Prior knowledge, 155-156, 336. See also

Domain theory
to augment search operators, 357-361
in Bayesian learning, 155
derivatives of target function, 346-356,

362
in explanation-based learning,

308-309
explicit, use in learning, 329
in human learning, 330
initialize-the-hypothesis approach,

339-346, 362
in PROLOG-EBG, 313
search alteration in inductive-analytical

learning, 339-340, 362
weighting in inductive-analytical

learning, 338, 362
Prioritized sweeping, 380
Probabilistic reasoning, 163
Probabilities:

estimation of, 179-1 80
formulas, 159
maximum likelihood (ML) hypothesis

for prediction of, 167-170
87-88 probability density, 165

Probability distribution, 133. See also
Binomial distribution: Normal
distribution

approximately correct (PAC)
learning. See PAC learning

h x e s s control in manufacturing, 17
PRODIGY, 326-327, 330
Product rule, 159
~ W L , 300-302
~ o L @ % 275,302, 330
PROLOG-EBG, 313-321, 328-329

applications of, 325
deductive learning in, 321-322
definition of, 314
derivation of new features in, 320-321
domain theory in, 322
EBNN algorithm, comparison with, 356
explanation of training examples,

314-318
weakest preimage in, 329

inductive bias in, 322-323
inductive logic programming,

comp'arison with, 322
limitations of, 329
perfect domain theory in, 313
prior knowledge in, 313
properties of, 3 19
regression process in, 3 16-3 18

Propositional rules:
learning by sequential covering

algorithms, 275
learning first-order rules, comparison

with, 283
psychology, influence on machine

learning, 4

Q function:
in deterministic environments, 374

convergence of Q learning towards,
377-380

in nondeterministic environments, 381
convergence of Q learning towards,

382
Q learning algorithm, 372-376. See also

Reinforcement learning
advantages of, 386
in deterministic environments, 375

convergence, 377-380
training rule, 375-376

strategies in, 379
lookup table, neural network substitution

for, 384
in nondeterministic environments,

381-383
convergence, 382-383
training rule, 382

updating sequence, 379
Query strategies, 37-38

Radial basis function networks, 23 1,
238-240, 245, 246, 247

advantages of, 240
Random variable, 133, 134, 137, 151
Randomized method, 150
Rank selection, 256
RBF networks. See Radial basis function

networks
RDT program, 303
Real-valued target function. See

Continuous-valued target function
Recurrent networks, 119-121. See also

Neural networks, artificial
Recursive rules, 284

learning by FOIL algorithm, 290
Reduced-error pruning, in decision tree

learning, 69-71
REGRESS algorithm, 3 17-3 18
Regression, 236

in PROLOG-EBG, 316-381
Reinforcement learning, 367-387. See also

Q learning algorithm
applications of, 387
differences from other methods, 369-370
dynamic programming and, 380,

385-387
explanation-based learning and, 330
function approximation algorithms in, :

384-385 1

Relational descriptions, learning of, 302
Relative frequency, 282
Relative mistake bound for

WEIGHTED-MAJORITY algorithm,
224-225

Residual, 236

Resolution rule, 293-294
first-order, 296-297
inverse entailment operator and,

294-296
propositional, 294

Restriction bias, 64
Reward function, in reinforcement

learning, 368
Robot control:

by BACKPROPAGATION and EBNN
algorithms, comparison of, 356

genetic programming in, 269
Robot driving. See Autonomous vehicles
Robot perception, attribute cost measures

in, 76
Robot planning problems, explanation-

based learning in, 327
ROTE-LEARNER algorithm, inductive bias

of, 44-45
Roulette wheel selection, 255
Rule for estimating training values, 10, 383
Rule learning, 274-303

in decision trees, 71-72
in explanation-based learning, 3 1 1-3 19
by FOCL algorithm, 357-360
by genetic algorithms, 256-259,

269-270, 274
Rule post-pruning, in decision tree

learning, 7 1-72
Rules:

disjunctive sets of, learning by sequential
covering algorithms, 275-276

first-order. See First-order rules
propositional. See Propositional rules

SafeToStack, 310-312
Sample complexity, 202. See also Training

examples
bound for consistent learners, 207-210,

225
equation for, 209

for finite hypothesis spaces, 207-214
for infinite hypothesis spaces, 214-220
of k-term CNF and DNF expressions,

213-214
of unbiased concepts, 212-213

Sample error, 130-131, 133-134, 143
training error and, 205

Sampling theory, 132-141
Scheduling problems:

case-based reasoning in, 241
explanation-based learning in, 325
PRODIGY in, 327
reinforcement learning in, 368

Schema theorem, 260-262
genetic operators in, 261-262

Search bias. See Preference bias
Search control problems:

explanation-based learning in, 325-328,
329, 330

limitations of, 327-328
as sequential control processes, 369

Search of hypothesis space. See Hypothesis
space search

Sequential control processes, 368-369
learning task in, 370-373
search control problems in, 369

Sequential covering algorithms, 274,
275-279, 301, 313, 363

choice of attribute-pairs in, 280-282
definition of, 276
FOIL algorithm, comparison with, 287,

301-302
ID3 algorithm, comparison with,

280-28 1
simultaneous covering algorithms,

comparison with, 280-282
variations of, 279-280, 286

Shattering, 214-215
Shepard's method, 234
Sigmoid function, 97, 104
Sigmoid units, 95-96, 115
Simultaneous covering algorithms:

choice of attributes in, 280-281
sequential covering algorithms,

comparison with, 280-282
Single-point crossover operator, 254, 261
SOAR, 327, 330
Specific-to-general search, 281

in FOIL algorithm, 287
Speech recognition, 3

BACKPROPAGATION algorithm in, 8 1
representation by multilayer network,

95, 96
VC dimension bound, 2 17-2 18 weight sharing in, 1 18

Split infomation, 73-74
Squashing function, 96
Stacking problems. See also SafeToStack

analytical learning in, 3 10
explanation-based learning in, 3 10
genetic programming in, 263-265
PRODIGY in, 327

Standard deviation, 133, I 36-1 37
State-transition function, 380
Statistics:

basic definitions, 133
influence on machine learning, 4

Stochastic gradient descent, 93-94,
98-100, 104-105

Student t tests, 147-150, 152
Substitution, 285, 296
Sum rule, 159

t tests, 147-150, 152
TANGENTPROP algorithm, 347-350, 362

BACKPROPAGATION algorithm,
comparison with, 349

in EBNN algorithm, 352
search of hypothesis space

by KBANN and BACKPROPAGATION
algorithms, comparison with,
350-35 1

tanh function, 97
Target concept, 22-23,4041

PAC learning of, 21 1-213
Target function, 7-8, 17

continuous-valued. See Continuous-
valued target function

representation of, 8-9, 14, 17
TD-GAMMON, 3, 14, 369, 383

TD(Q and BACKPROPAGATION algorithm
in, 384

TD(h), 383-384, 387
Temporal credit assignment, in

reinforcement learning, 369
Temporal difference learning, 383-384,

386-387
Terms, in logic, 284, 285
Text classification, naive Bayes classifier

in, 180-184

Theorem of total probability, 159
0-subsumption, 302

with entailment and
more-general-than partial ordering,
299-300

Tournament selection, 256
Training and validation set approach, 69.

See also Validation set
Training derivatives, 117-1 18
Training error:

of continuous-valued hypotheses, 89-90
of discrete-valued hypotheses, 205
in multilayer networks, 98

alternative error functions, 1 17-1 18
Training examples, 5-6, 17, 23. See also

Sample complexity
explanation in PROLOG-EBG, 3 14-3 18
in PAC learning, 205-207

bounds on, 226
Voronoi diagram of, 233

Training experience, 5-6, 17
Training values, rule for estimation of, 10
True error, 130-131, 133, 137, 150,

204-205
of two hypotheses, differences in,

143-144
in version spaces, 208-209

Two-point crossover operator, 255,
257-258

Two-sided bounds, 141

Unbiased estimator, 133, 137
Unbiased learners, 4 0 4 2

sample complexity of, 2 12-2 1 3
Uniform crossover operator, 255
Unifying substitution, 285, 296
Unsupe~ised learning, 191
Utility analysis, in explanation-based

learning, 327-328

Validation set. See also Training and I

validation set approach i
cross-validation and, 1 1 1-1 12
error over, 1 10

Vapnik-Chervonenkis (VC) dimension. See
VC dimension

Variables, in logic, 284, 285
Variance, 133, 136-137, 138, 143
VC dimension, 214-217, 226

bound on sample complexity, 217-218
definition of, 215
of neural networks, 218-220

Version space representation theorem, 32
Version spaces, 29-39, 46, 47, 207-208

Bayes optimal classifier and, 176
definition of, 30
exhaustion of, 208-210, 226
representations of, 30-32

Voronoi diagram, 233

Weakest preimage, 316, 329
Weight decay, 1 1 1, 117
Weight sharing, 1 18

Weight update rules, 10-1 1
BACKPROPAGATION weight update rule,

101-103
alternative error functions, 117-1 18
in KBANN algorithm, 343-344
optimization methods, 119
output units, 171

delta rule, 1 1, 88-90, 94
gradient ascent, 170-17 1
gradient descent, 91-92, 95
linear programming, 95
perceptron training rule, 88-89
stochastic gradient descent, 93-94

WEIGHTED-MAJORITY algorithm, 222-226
mistake-bound learning in, 224-225

Weighted voting, 222, 223, 226
Widrow-Hoff rule. See Delta rule

